Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 368: 109124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072125

RESUMO

Cell migration is one of the most studied phenomena in biology since it plays a fundamental role in many physiological and pathological processes such as morphogenesis, wound healing and tumorigenesis. In recent years, researchers have performed experiments showing that cells can migrate in response to mechanical stimuli of the substrate they adhere to. Motion towards regions of the substrate with higher stiffness is called durotaxis, while motion guided by the stress or the deformation of the substrate itself is called tensotaxis. Unlike chemotaxis (i.e. the motion in response to a chemical stimulus), these migratory processes are not yet fully understood from a biological point of view. In this respect, we present a mathematical model of single-cell migration in response to mechanical stimuli, in order to simulate these two processes. Specifically, the cell moves by changing its direction of polarization and its motility according to material properties of the substrate (e.g., stiffness) or in response to proper scalar measures of the substrate strain or stress. The equations of motion of the cell are non-local integro-differential equations, with the addition of a stochastic term to account for random Brownian motion. The mechanical stimulus to be integrated in the equations of motion is defined according to experimental measurements found in literature, in the case of durotaxis. Conversely, in the case of tensotaxis, substrate strain and stress are given by the solution of the mechanical problem, assuming that the extracellular matrix behaves as a hyperelastic Yeoh's solid. In both cases, the proposed model is validated through numerical simulations that qualitatively reproduce different experimental scenarios.


Assuntos
Quimiotaxia , Matriz Extracelular , Movimento Celular , Modelos Teóricos , Cicatrização , Modelos Biológicos
2.
Bull Math Biol ; 85(9): 79, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460873

RESUMO

When cells are seeded on a cyclically deformed substrate like silicon, they tend to reorient their major axis in two ways: either perpendicular to the main stretching direction, or forming an oblique angle with it. However, when the substrate is very soft such as a collagen gel, the oblique orientation is no longer observed, and the cells align either along the stretching direction, or perpendicularly to it. To explain this switch, we propose a simplified model of the cell, consisting of two elastic elements representing the stress fiber/focal adhesion complexes in the main and transverse directions. These elements are connected by a torsional spring that mimics the effect of crosslinking molecules among the stress fibers, which resist shear forces. Our model, consistent with experimental observations, predicts that there is a switch in the asymptotic behaviour of the orientation of the cell determined by the stiffness of the substratum, related to a change from a supercritical bifurcation scenario, whereby the oblique configuration is stable for a sufficiently large stiffness, to a subcritical bifurcation scenario at a lower stiffness. Furthermore, we investigate the effect of cell elongation and find that the region of the parameter space leading to an oblique orientation decreases as the cell becomes more elongated. This implies that elongated cells, such as fibroblasts and smooth muscle cells, are more likely to maintain an oblique orientation with respect to the main stretching direction. Conversely, rounder cells, such as those of epithelial or endothelial origin, are more likely to switch to a perpendicular or parallel orientation on soft substrates.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Elasticidade , Colágeno , Fibras de Estresse/fisiologia , Estresse Mecânico
3.
J Theor Biol ; 514: 110578, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417902

RESUMO

The aim of this work is to provide a mathematical model to describe the early stages of the embryonic development of zebrafish posterior lateral line (PLL). In particular, we focus on evolution of PLL proto-organ (said primordium), from its formation to the beginning of the cyclical behavior that amounts in the assembly of immature proto-neuromasts towards its caudal edge accompanied by the deposition of mature proto-neuromasts at its rostral region. Our approach has an hybrid integro-differential nature, since it integrates a microscopic/discrete particle-based description for cell dynamics and a continuous description for the evolution of the spatial distribution of chemical substances (i.e., the stromal-derived factor SDF1a and the fibroblast growth factor FGF10). Boolean variables instead implement the expression of molecular receptors (i.e., Cxcr4/Cxcr7 and fgfr1). Cell phenotypic transitions and proliferation are included as well. The resulting numerical simulations show that the model is able to qualitatively and quantitatively capture the evolution of the wild-type (i.e., normal) embryos as well as the effect of known experimental manipulations. In particular, it is shown that cell proliferation, intercellular adhesion, FGF10-driven dynamics, and a polarized expression of SDF1a receptors are all fundamental for the correct development of the zebrafish posterior lateral line.


Assuntos
Sistema da Linha Lateral , Animais , Movimento Celular , Proliferação de Células , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1807): 20190385, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32713304

RESUMO

The morphogenesis of zebrafish posterior lateral line (PLL) is a good predictive model largely used in biology to study cell coordinated reorganization and collective migration regulating pathologies and human embryonic processes. PLL development involves the formation of a placode formed by epithelial cells with mesenchymal characteristics which migrates within the animal myoseptum while cyclically assembling and depositing rosette-like clusters (progenitors of neuromast structures). The overall process mainly relies on the activity of specific diffusive chemicals, which trigger collective directional migration and patterning. Cell proliferation and cascade of phenotypic transitions play a fundamental role as well. The investigation on the mechanisms regulating such a complex morphogenesis has become a research topic, in the last decades, also for the mathematical community. In this respect, we present a multiscale hybrid model integrating a discrete approach for the cellular level and a continuous description for the molecular scale. The resulting numerical simulations are then able to reproduce both the evolution of wild-type (i.e. normal) embryos and the pathological behaviour resulting form experimental manipulations involving laser ablation. A qualitative analysis of the dependence of these model outcomes from cell-cell mutual interactions, cell chemical sensitivity and internalization rates is included. The aim is first to validate the model, as well as the estimated parameter values, and then to predict what happens in situations not tested yet experimentally. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.


Assuntos
Padronização Corporal , Movimento Celular , Sistema da Linha Lateral/embriologia , Peixe-Zebra/embriologia , Animais , Proliferação de Células , Embrião não Mamífero/embriologia
5.
J Biol Dyn ; 12(1): 632-662, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051763

RESUMO

The swarming of a bee colony is guided by a small group of scout individuals, which are informed of the target destination (the new nest). However, little is known on the underlying mechanisms, i.e. on how the information is passed within the population. In this respect, we here present a discrete mathematical model to investigate these aspects. In particular, each bee, represented by a material point, is assigned its status within the colony and set to move according to individual strategies and social interactions. More specifically, we propose alternative assumptions on the flight synchronization mechanism of uninformed individuals and on the characteristic dynamics of the scout insects. Numerical realizations then point out the combinations of behavioural hypotheses resulting in collective productive movement. An analysis of the role of the scout bee percentage and of the phenomenology of the swarm in domains with structural elements is finally performed.


Assuntos
Comportamento Cooperativo , Voo Animal/fisiologia , Modelos Biológicos , Comportamento de Nidação , Animais , Simulação por Computador , Meio Ambiente , Análise Numérica Assistida por Computador , Dinâmica Populacional
6.
J Theor Biol ; 445: 75-91, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29476831

RESUMO

The description of the cell spatial pattern and characteristic distances is fundamental in a wide range of physio-pathological biological phenomena, from morphogenesis to cancer growth. Discrete particle models are widely used in this field, since they are focused on the cell-level of abstraction and are able to preserve the identity of single individuals reproducing their behavior. In particular, a fundamental role in determining the usefulness and the realism of a particle mathematical approach is played by the choice of the intercellular pairwise interaction kernel and by the estimate of its parameters. The aim of the paper is to demonstrate how the concept of H-stability, deriving from statistical mechanics, can have important implications in this respect. For any given interaction kernel, it in fact allows to a priori predict the regions of the free parameter space that result in stable configurations of the system characterized by a finite and strictly positive minimal interparticle distance, which is fundamental when dealing with biological phenomena. The proposed analytical arguments are indeed able to restrict the range of possible variations of selected model coefficients, whose exact estimate however requires further investigations (e.g., fitting with empirical data), as illustrated in this paper by series of representative simulations dealing with cell colony reorganization, sorting phenomena and zebrafish embryonic development.


Assuntos
Movimento Celular/fisiologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos , Peixe-Zebra/embriologia , Animais
7.
Comput Biol Med ; 93: 158-174, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29316459

RESUMO

In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Modelos Biológicos , Comportamento Social , Animais
8.
J Math Biol ; 71(5): 1049-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25358500

RESUMO

This paper deals with the derivation of a collective model of cell populations out of an individual-based description of the underlying physical particle system. By looking at the spatial distribution of cells in terms of time-evolving measures, rather than at individual cell paths, we obtain an ensemble representation stemming from the phenomenological behavior of the single component cells. In particular, as a key advantage of our approach, the scale of representation of the system, i.e., microscopic/discrete vs. macroscopic/continuous, can be chosen a posteriori according only to the spatial structure given to the aforesaid measures. The paper focuses in particular on the use of different scales based on the specific functions performed by cells. A two-population hybrid system is considered, where cells with a specialized/differentiated phenotype are treated as a discrete population of point masses while unspecialized/undifferentiated cell aggregates are represented by a continuous approximation. Numerical simulations and analytical investigations emphasize the role of some biologically relevant parameters in determining the specific evolution of such a hybrid cell system.


Assuntos
Fenômenos Fisiológicos Celulares , Modelos Biológicos , Animais , Fenômenos Biofísicos , Agregação Celular , Diferenciação Celular , Quimiotaxia , Simulação por Computador , Humanos , Conceitos Matemáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...