Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 50(3): 589-597, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684227

RESUMO

Loss of biodiversity and accumulation of contaminants in urban soils and water bodies cause serious issues in metropolitan areas. The Matanza-Riachuelo river basin (metropolitan area of Buenos Aires, Argentina) is one of the most environmentally degraded regions in the world. Senecio bonariensis Hook & Arn (Asteraceae) grows in the periodically flooded soils of this wetland. This plant concentrates potentially toxic trace elements (PTEs) in its tissues and establishes symbiosis with arbuscular mycorrhizal (AM) fungi that collaborate with PTE phytostabilization in soils. The objective of this work was to evaluate tolerance and stress alleviation of AM-colonized S. bonariensis when transplanting and exposing to highly polluted environmental conditions of the river basin. Plants were initially inoculated with different AM strains and maintained in greenhouse conditions. After 6 mo, they were transplanted to the field. These plants showed a more equal distribution between shoot and root biomass production in comparison to field spontaneous S. bonaerensis plants. Plants in earlier contact with native soil inoculum showed positive correlation with phosphorus content and a significant increase of vesicle frequency. Plants belatedly contacted with native inoculum in the field (control) showed a higher catalase level that was positively correlated with the total colonization frequency and chlorophyll content. The ability to establish symbiosis with Rhizophagus intraradices (strain GC3), commonly used in the formulation of biofertilizers, was also analyzed. Plants inoculated with GC3 at the beginning of the assay showed lower colonization and were less efficient in the field. The preservation of spontaneous native plants with ornamental value and bioaugmentation of their associated microbiome can contribute to the stabilization of contaminants in soils.


Assuntos
Micorrizas , Senécio , Fungos , Solo , Simbiose
2.
Mycologia ; 106(5): 963-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24891409

RESUMO

The growth dynamics of extraradical mycelium and spore formation of 14 "Rhizophagus" isolates from different sites in Argentina were evaluated under monoxenic conditions. A modified Gompertz model was used to characterize the development of mycelium and spores for each isolate under the same conditions. The lag time, maximal growth rate and total quantity of both extraradical hyphae and spores were determined. Wide variability among isolates was detected, and all growth parameters were significantly altered by fungal isolate. Discriminant analysis differentiated isolates primarily based on the extent of extraradical hyphae produced, yet such differences did not conclusively correspond to phylogenetic relationships among closely related isolates based on partial SSU sequences. Given that the "Rhizophagus" isolates were grown under controlled conditions for many generations, the expression of phenotypic variability could be attributed to genetic differences that are not completely resolved by phylogenetic analysis employing the small ribosomal gene.


Assuntos
Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Argentina , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glomeromycota/genética , Glomeromycota/fisiologia , Dados de Sequência Molecular , Micélio , Micorrizas/genética , Micorrizas/fisiologia , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Esporos Fúngicos
3.
ScientificWorldJournal ; 2014: 378950, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688382

RESUMO

The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.


Assuntos
Micorrizas/fisiologia , Olea/fisiologia , Raízes de Plantas/microbiologia , Adaptação Fisiológica , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Fungos/fisiologia , Malondialdeído/metabolismo , Olea/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA