Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genom Data ; 25(1): 68, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982354

RESUMO

The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes within the significant regions are known for their involvement in growth and body size development, including MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to explore the associations between homozygous regions with growth and feed efficiency traits in American mink. Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency traits, that can be utilized in developing a sustainable breeding program for mink.


Assuntos
Homozigoto , Vison , Polimorfismo de Nucleotídeo Único , Animais , Vison/genética , Vison/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla/veterinária , Ração Animal , Fenótipo
2.
Foods ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731679

RESUMO

Previous studies on consumer perceptions and behaviors of salmon have often neglected Indigenous rights within the Canadian salmon sector. This study innovatively addresses this gap by integrating Indigenous rights into the current analysis, alongside considerations of sustainability practices, socio-economic impacts, and consumer motivations. Our research objectives aim to fit three consumer perceptions-environmental sustainability, economic considerations, and Indigenous rights-and to evaluate their associations, alongside perception of a price increase, socio-demographics, and consumer motivation factors, with purchasing behaviors related to Canadian salmon products. Data for this study was collected from a nationwide online survey. Responses to Question 2 and Question 35 are encoded with numerical values ranging from 1 to 5, where larger numbers indicate stronger agreement with the statement. The inclusion of methodologies such as the Graded Response Model (GRM) and Cumulative Link Models (CLM) adds another innovative dimension to this study. Our findings demonstrate how consumer profiles are associated with these four perceptions and their underlying determinants. Furthermore, the study quantifies the influence of these four perceptions on each consumer purchase behavior. The implications of these findings extend to the realm of mathematical modeling in consumer decision-making processes, offering practical insights for businesses and marketers, and emphasizing the importance of implementing regulatory frameworks and initiatives that promote sustainability, safeguard Indigenous rights, and address socio-economic disparities.

3.
J Anim Breed Genet ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389405

RESUMO

The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.

4.
Sci Rep ; 14(1): 24, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167844

RESUMO

Copy number variations (CNVs) are structural variants consisting of duplications and deletions of DNA segments, which are known to play important roles in the genetics of complex traits in livestock species. However, CNV-based genome-wide association studies (GWAS) have remained unexplored in American mink. Therefore, the purpose of the current study was to investigate the association between CNVs and complex traits in American mink. A CNV-based GWAS was performed with the ParseCNV2 software program using deregressed estimated breeding values of 27 traits as pseudophenotypes, categorized into traits of growth and feed efficiency, reproduction, pelt quality, and Aleutian disease tests. The study identified a total of 10,137 CNVs (6968 duplications and 3169 deletions) using the Affymetrix Mink 70K single nucleotide polymorphism (SNP) array in 2986 American mink. The association analyses identified 250 CNV regions (CNVRs) associated with at least one of the studied traits. These CNVRs overlapped with a total of 320 potential candidate genes, and among them, several genes have been known to be related to the traits such as ARID1B, APPL1, TOX, and GPC5 (growth and feed efficiency traits); GRM1, RNASE10, WNT3, WNT3A, and WNT9B (reproduction traits); MYO10, and LIMS1 (pelt quality traits); and IFNGR2, APEX1, UBE3A, and STX11 (Aleutian disease tests). Overall, the results of the study provide potential candidate genes that may regulate economically important traits and therefore may be used as genetic markers in mink genomic breeding programs.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Variações do Número de Cópias de DNA/genética , Vison/genética , Genótipo , Genoma , Polimorfismo de Nucleotídeo Único
5.
Fish Physiol Biochem ; 49(1): 39-60, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36522560

RESUMO

Climate change can have cascading impacts on biochemical reactions in aquatic ecosystems. Aquatic ectotherms can adapt to surrounding temperatures by using long-chain polyunsaturated fatty acids (LC-PUFAs) to maintain cell membrane fluidity. In a warming scenario, less LC-PUFA is needed to maintain fluidity. Our objective was to determine the impact of low dietary LC-PUFA and warm water temperature on growth, fatty acid (FA) storage, and expression of lipid metabolism-related transcripts in Atlantic salmon. Salmon (141 g) were fed two diets (high or low LC-PUFA) at either 12 °C or 16 °C for 16 weeks. Salmon weighed more and consumed more food at 16 °C and when fed the low-LC-PUFA diet. Liver and muscle FA mostly depended on diet rather than temperature. DHA in muscle was higher at 16 °C and in salmon fed the high-LC-PUFA diet. Levels of FA desaturation transcripts were more highly expressed at 16 °C and in salmon fed the low-LC-PUFA diet, which suggests synthesis of LC-PUFA. Overall, with slow, chronic temperature increases, salmon may adapt to low dietary LC-PUFA by synthesizing more when required.


Assuntos
Ácidos Graxos Ômega-3 , Salmo salar , Animais , Ácidos Graxos Ômega-3/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Temperatura , Água , Ecossistema , Dieta/veterinária , Ácidos Graxos/metabolismo , Ingestão de Alimentos
6.
Mar Drugs ; 22(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276649

RESUMO

The continuous growth of aquaculture places a growing demand on alternative sources of fish oil (FO). Certain microorganisms provide a sustainable replacement for FO due to their content of EPA and DHA, which are essential for fish health. Appreciable evidence shows that changes in feeding sources may alter the nutritional components of salmon; however, the influence of diets on lipid species remains unclear. In this study, the identification and semi-quantification of lipid molecular species in salmon muscle during feeding with a microbial oil (MO) were carried out by focusing on triacylglycerol (TAG) and diacyl-phospholipid using shotgun-based mass spectrometry analysis. DHA in the MO diet was efficiently incorporated into phospholipid structures on feeding, followed by accumulation in salmon muscle. The MO diet elevated the level of certain EPA-containing TAGs, such as TAG C52:5 (16:0_16:0_20:5) and TAG C54:6 (16:0_18:1_20:5), indicating that the MO diet may be an excellent source for enhancement of the abundance of ω3 lipids. Further, prostaglandins (PGs) PGE2 and PGF3α were identified and quantified for the first time in salmonid tissue.


Assuntos
Fosfolipídeos , Salmo salar , Animais , Fosfolipídeos/química , Triglicerídeos , Salmão , Óleos de Plantas/química , Eicosanoides , Óleos de Peixe/farmacologia , Músculos , Ácidos Graxos/química
7.
BMC Genomics ; 23(1): 649, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36096727

RESUMO

BACKGROUND: Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS: A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS: This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.


Assuntos
Variações do Número de Cópias de DNA , Vison , Animais , Mapeamento Cromossômico , Fatores de Crescimento de Fibroblastos/genética , Genoma , Vison/genética , Sequenciamento Completo do Genoma
8.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801647

RESUMO

Feed cost is the largest expense of mink production systems, and, therefore, improvement of feed efficiency (FE) through selection for high feed-efficient mink is a practical way to increase the mink industry's sustainability. In this study, we estimated the heritability, phenotypic, and genetic correlations for different FE measures and component traits, including harvest weight (HW), harvest length (HL), final body length (FBL), final body weight (FBW), average daily gain (ADG), daily feed intake (DFI), feed conversion ratio (FCR), residual feed intake (RFI), residual gain (RG), residual intake and gain (RIG), and Kleiber ratio (KR), using data from 2,288 American mink (for HW and HL), and 1,038 to 1,906 American mink (for other traits). Significance (P < 0.05) of fixed effects (farm, sex, and color type), a covariate (age of animal), and random effects (additive genetic, maternal, and common litter) were evaluated through univariate models implemented in ASReml-R version 4. Genetic parameters were estimated via fitting a set of bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.28 ± 0.06, 0.23 ± 0.06, 0.28 ± 0.10, 0.27 ± 0.11, 0.25 ± 0.09, 0.26 ± 0.09, 0.20 ± 0.09, 0.23 ± 0.09, 0.21 ± 0.10, 0.25 ± 0.10, and 0.26 ± 0.10 for HW, HL, FBL, FBW, ADG, DFI, FCR, RFI, RG, RIG, and KR, respectively. RIG had favorable genetic correlations with DFI (-0.62 ± 0.24) and ADG (0.58 ± 0.21), and nonsignificant (P > 0.05) genetic correlations with FBW (0.14 ± 0.31) and FBL (-0.15 ± 0.31). These results revealed that RIG might be a superior trait as it guarantees reduced feed intake with faster-growing mink yet with no negative impacts on body weight and length. In addition, the strong positive genetic correlations (±SE) between KR with component traits (0.88 ± 0.11 with FBW, 0.68 ± 0.17 with FBL, and 0.97 ± 0.02 with ADG) suggested KR as an applicable indirect measure of FE for improvement of component traits as it did not require the individual feed intake to be measured. Overall, our results confirmed the possibility of including FE traits in mink breeding programs to effectively select feed-efficient animals.


Improvement of feed efficiency (FE) in American mink is highly beneficial, as feed costs comprise the largest expense of mink production systems. The present study estimated the heritability, phenotypic and genetic correlations for different FE measures and component traits in mink. The residual intake and gain can be applied as FE measurement in selection programs as it will guarantee faster-growing mink with reduced feed intake, yet without negative impacts on growth traits. In addition, Kleiber ratio had strong positive genetic correlations with component traits, which made this trait an appealing indirect FE trait for mink breeding programs, knowing the fact that this trait was not dependent on feed intake records. Overall, our results suggested that including FE traits can assist mink breeding programs to develop an index for the selection of feed-efficient mink and, therefore, reduce the cost of mink production.


Assuntos
Ingestão de Alimentos , Vison , Ração Animal , Animais , Peso Corporal/genética , Ingestão de Alimentos/genética , Vison/genética , Fenótipo
9.
Front Genet ; 13: 903733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754793

RESUMO

Despite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits. This review comprehensively discusses the topics related to the FE in pigs including: measurements, genetics, genomics, biological pathways and the advanced technologies and methods involved in FE improvement. We first provide an update of heritability for different FE indicators and then characterize the correlations of FE traits with other economically important traits. Moreover, we present the quantitative trait loci (QTL) and possible candidate genes associated with FE in pigs and outline the most important biological pathways related to the FE traits in pigs. Finally, we present possible ways to improve FE in swine including the implementation of genomic selection, new technologies for measuring the FE traits, and the potential use of genome editing and omics technologies.

10.
Aquac Nutr ; 2022: 6336060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860469

RESUMO

The salmon aquaculture industry must be proactive at developing mitigation tools/strategies to offset the potential negative impacts of climate change. Therefore, this study examined if additional dietary cholesterol could enhance salmon production at elevated temperatures. We hypothesized that supplemental cholesterol could aid in maintaining cell rigidity, reducing stress and the need to mobilize astaxanthin muscle stores, and improving salmon growth and survival at high rearing temperatures. Accordingly, postsmolt female triploid salmon were exposed to an incremental temperature challenge (+0.2°C day-1) to mimic conditions that they experience in sea cages in the summer, with temperature held at both 16 and 18°C for several weeks [i.e., 3 weeks at 16°C, followed by an increase at 0.2°C day-1 to 18°C (10 days), then 5 weeks at 18°C] to prolong their exposure to elevated temperatures. From 16°C onwards, the fish were fed either a control diet, or one of two nutritionally equivalent experimental diets containing supplemental cholesterol [+1.30%, experimental diet #1 (ED1); or +1.76%, experimental diet #2 (ED2)]. Adding cholesterol to the diet did not affect the salmon's incremental thermal maximum (ITMax), growth, plasma cortisol, or liver stress-related transcript expression. However, ED2 appeared to have a small negative impact on survival, and both ED1 and ED2 reduced fillet "bleaching" above 18°C as measured using SalmoFan™ scores. Although the current results suggest that supplementing salmon diets with cholesterol would have few/minimal benefits for the industry, ≤ 5% of the female triploid Atlantic salmon used in this study irrespective of diet died before temperature reached 22°C. These latter data suggest that it is possible to produce all female populations of reproductively sterile salmon that can withstand summer temperatures in Atlantic Canada.

11.
Animals (Basel) ; 11(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924273

RESUMO

In this study, we evaluated whether oil extracted from the marine microbe, Schizochytrium sp. (strain T18), with high levels of docosahexaenoic acid (DHA), could replace fish oil (FO) in diets for rainbow trout (Oncorhynchus mykiss). Three experimental diets were tested: (1) a control diet with fish oil (FO diet), (2) a microbial oil (MO) diet with a blend of camelina oil (CO) referred to as MO/CO diet, and (3) a MO diet (at a higher inclusion level). Rainbow trout (18.8 ± 2.9 g fish-1 initial weight ± SD) were fed for 8 weeks and evaluated for growth performance, fatty acid content and transcript expression of lipid-related genes in liver and muscle. There were no differences in growth performance measurements among treatments. In liver and muscle, eicosapentaenoic acid (EPA) was highest in trout fed the FO diet compared to the MO/CO and MO diets. Liver DHA was highest in trout fed the MO/CO diet compared to the FO and MO diets. Muscle DHA was highest in trout fed the MO and MO/CO diets compared to the FO diet. In trout fed the MO/CO diet, compared to the MO diet, fadsd6b was higher in both liver and muscle. In trout fed the FO or MO/CO diets, compared to the MO diet, cox1a was higher in both liver and muscle, cpt1b1a was higher in liver and cpt1a1a, cpt1a1b and cpt1a2a were higher in muscle. Schizochytrium sp. (T18) oil was an effective source of DHA for rainbow trout.

12.
Ambio ; 49(4): 865-880, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31512173

RESUMO

Docosahexaenoic acid (DHA) is an essential, omega-3, long-chain polyunsaturated fatty acid that is a key component of cell membranes and plays a vital role in vertebrate brain function. The capacity to synthesize DHA is limited in mammals, despite its critical role in neurological development and health. For humans, DHA is most commonly obtained by eating fish. Global warming is predicted to reduce the de novo synthesis of DHA by algae, at the base of aquatic food chains, and which is expected to reduce DHA transferred to fish. We estimated the global quantity of DHA (total and per capita) currently available from commercial (wild caught and aquaculture) and recreational fisheries. The potential decrease in the amount of DHA available from fish for human consumption was modeled using the predicted effect of established global warming scenarios on algal DHA production and ensuing transfer to fish. We conclude that an increase in water temperature could result, depending on the climate scenario and location, in a ~ 10 to 58% loss of globally available DHA by 2100, potentially limiting the availability of this critical nutrient to humans. Inland waters show the greatest potential for climate-warming-induced decreases in DHA available for human consumption. The projected decrease in DHA availability as a result of global warming would disproportionately affect vulnerable populations (e.g., fetuses, infants), especially in inland Africa (due to low reported per capita DHA availability). We estimated, in the worst-case scenario, that DHA availability could decline to levels where 96% of the global population may not have access to sufficient DHA.


Assuntos
Ácidos Docosa-Hexaenoicos , Aquecimento Global , Animais , Aquicultura , Pesqueiros , Peixes , Humanos
13.
Sci Eng Ethics ; 25(5): 1485-1497, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30465298

RESUMO

Genetically engineered (GE) organisms have been at the center of ethical debates among the public and regulators over their potential risks and benefits to the environment and society. Unlike the currently commercial GE crops that express resistance or tolerance to pesticides or herbicides, a new GE crop produces two bioactive nutrients (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) that heretofore have largely been produced only in aquatic environments. This represents a novel category of risk to ecosystem functioning. The present paper describes why growing oilseed crops engineered to produce EPA and DHA means introducing into a terrestrial ecosystem a pair of highly bioactive nutrients that are novel to terrestrial ecosystems and why that may have ecological and physiological consequences. More importantly perhaps, this paper argues that discussion of this novel risk represents an opportunity to examine the way the debate over genetically modified crops is being conducted.


Assuntos
Produtos Agrícolas/genética , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Engenharia Genética/ética , Plantas Geneticamente Modificadas , Temas Bioéticos , Ecossistema , Nutrientes/biossíntese , Óleos de Plantas/química
14.
PLoS One ; 13(10): e0205347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304012

RESUMO

The increasing use of terrestrial plant lipids to replace of fish oil in commercial aquafeeds requires understanding synthesis and storage of long chain-polyunsaturated fatty acids (LC-PUFA) in farmed fish. Manipulation of dietary fatty acids may maximize tissue storage of LC-PUFA, through increased production and selective utilization. A data synthesis study was conducted to estimate optimal levels of fatty acids that may maximize the production and storage of LC-PUFA in the edible portion of salmonids. Data were compiled from four studies with Atlantic salmon, rainbow trout, and steelhead trout (total n = 180) which were fed diets containing different terrestrial-based oils to replace fish oil. LC-PUFA (%) were linearly correlated between diet and muscle tissue (p < 0.001; r2 > 44%), indicating proportional storage after consumption. The slope, or retention rate, was highest for docosahexaenoic acid (DHA) at 1.23, indicating that an additional 23% of DHA was stored in the muscle. Dietary saturated fatty acids were positively related to DHA stored in the muscle (p < 0.001; r2 = 22%), which may involve membrane structural requirements, as well as selective catabolism. DHA was found to be optimally stored with a dietary n-3: n-6 ratio of 1.03: 1. These new results provide a baseline of optimal dietary ratios that can be tested experimentally to determine the efficacy of balancing dietary fatty acids for maximum LC-PUFA storage.


Assuntos
Ração Animal , Dieta , Ácidos Graxos Insaturados/biossíntese , Salmonidae/metabolismo , Animais , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Insaturados/metabolismo , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Metabolismo dos Lipídeos/fisiologia , Plantas/química
15.
J Lipid Res ; 58(10): 2071-2081, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694298

RESUMO

DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers.


Assuntos
Encéfalo/metabolismo , Gorduras na Dieta/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Animais , Feminino , Isótopos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Gravidez
16.
PLoS One ; 11(8): e0160497, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479304

RESUMO

It is commonly assumed that the most accurate data on fatty acid (FA) contents are obtained when samples are analyzed immediately after collection. For logistical reasons, however, this is not always feasible and samples are often kept on ice or frozen at various temperatures and for diverse time periods. We quantified temporal changes of selected FA (µg FAME per mg tissue dry weight) from 6 fish species subjected to 2 handling and 3 storage methods and compared them to FA contents from muscle tissue samples that were processed immediately. The following species were investigated: Common Carp (Cyprinus carpio), Freshwater Drum (Aplodinotus grunniens), Channel Catfish (Ictalurus punctatus), Antarctic Eelpout (Pachycara brachycephalum), Rainbow Trout (Oncorhynchus mykiss) and Arctic Charr (Salvelinus alpinus). The impact of storage method and duration of storage on FA contents were species-specific, but not FA-specific. There was no advantage in using nitrogen gas for tissue samples held on ice for 1 week; however, holding tissue samples on ice for 1 week resulted in a loss of FA in Charr. In addition, most FA in Trout and Charr decreased in quantity after being stored between 3 and 6 hours on ice. Freezer storage temperature (-80 or -20°C) also had a significant effect on FA contents in some species. Generally, we recommend that species with high total lipid content (e.g. Charr and Trout) should be treated with extra caution to avoid changes in FA contents, with time on ice and time spent in a freezer emerging as significant factors that changed FA contents.


Assuntos
Ácidos Graxos/análise , Peixes/metabolismo , Manejo de Espécimes/métodos , Animais , Carpas/metabolismo , Peixes-Gato/metabolismo , Cromatografia Gasosa , Gases/química , Lipídeos/análise , Nitrogênio/química , Oncorhynchus mykiss/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...