Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 230: 115591, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887855

RESUMO

Maize starch was plasticized by glycerol, choline chloride ([Chol][Cl]) and ionic liquids (Choline acetate ([Chol][Ace]), 1-Ethyl-3-methylimidazolium Chloride ([EMIM][Cl]) and 1-Ethyl-3-methylimidazolium acetate ([EMIM][Ace]). Melt rheology at 120 °C was assessed with a twin-screw micro-compounder used for processing small quantities (8-10 g), and with a capillary rheometer with pre-shearing (Rheoplast). Qualitative agreement was found between shear viscosities obtained by both rheometry devices, showing the interest of the micro-compounder for screening of plasticizers' influence. The lower shear viscosity values were obtained in presence of [EMIM][Ace] whereas [Chol][Cl] led to the largest ones. Rather than processing induced macromolecular degradation, the glass transition temperature depressing effect of the plasticizers was found to better explain viscosity differences. This underlines the strong influence of the nature of the plasticizers on starch melt rheology. Finally, results from extensional viscosity shows the specific influence of [EMIM][Ace], suggesting that this plasticizer could be particularly relevant for thermoplastic starch processing.

2.
Carbohydr Polym ; 177: 424-432, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962788

RESUMO

Native starch containing 12% water was melt processed in presence of 23% of various plasticizers at 120°C, either by simple compression molding or by extrusion using a laboratory scale microcompounder. Glycerol, a typical starch plasticizer, was used as a reference and compared to three choline salts: raw choline chloride (which is a solid in dry state with a melting point above 300°C), and two ionic liquids synthesized from this precursor (choline acetate and choline lactate, liquids below 100°C). These ionic plasticizers were shown to allow a more efficient melting of native starch in both processes. The investigation of macromolecular structure changes during processing shows that this efficiency can be ascribed to a starch chain scission mechanism, resulting in lower specific mechanical energy input need for starch thermoplasticization compared to glycerol plasticized starch. Compared to the synthesized ionic liquids, raw commercial choline chloride leads to a good compromise between limited chain scission, and final water uptake and thermomechanical properties.


Assuntos
Colina/química , Líquidos Iônicos/química , Plastificantes/química , Amido/química , Glicerol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...