Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 27S: S60-S68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500832

RESUMO

BACKGROUND: Myriad challenges to the proper folding and structural maturation of secretory pathway client proteins in the endoplasmic reticulum (ER) - a condition referred to as "ER stress" - activate intracellular signaling pathways termed the unfolded protein response (UPR). SCOPE OF REVIEW: Through executing transcriptional and translational programs the UPR restores homeostasis in those cells experiencing manageable levels of ER stress. But the UPR also actively triggers cell degeneration and apoptosis in those cells that are encountering ER stress levels that exceed irremediable thresholds. Thus, UPR outputs are "double-edged". In pancreatic islet ß-cells, numerous genetic mutations affecting the balance between these opposing UPR functions cause diabetes mellitus in both rodents and humans, amply demonstrating the principle that the UPR is critical for the proper functioning and survival of the cell. MAJOR CONCLUSIONS: Specifically, we have found that the UPR master regulator IRE1α kinase/endoribonuclease (RNase) triggers apoptosis, ß-cell degeneration, and diabetes, when ER stress reaches critical levels. Based on these mechanistic findings, we find that novel small molecule compounds that inhibit IRE1α during such "terminal" UPR signaling can spare ER stressed ß-cells from death, perhaps affording future opportunities to test new drug candidates for disease modification in patients suffering from diabetes.


Assuntos
Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Humanos
3.
Cell Metab ; 25(4): 883-897.e8, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380378

RESUMO

In cells experiencing unrelieved endoplasmic reticulum (ER) stress, the ER transmembrane kinase/endoribonuclease (RNase)-IRE1α-endonucleolytically degrades ER-localized mRNAs to promote apoptosis. Here we find that the ABL family of tyrosine kinases rheostatically enhances IRE1α's enzymatic activities, thereby potentiating ER stress-induced apoptosis. During ER stress, cytosolic ABL kinases localize to the ER membrane, where they bind, scaffold, and hyperactivate IRE1α's RNase. Imatinib-an anti-cancer tyrosine kinase inhibitor-antagonizes the ABL-IRE1α interaction, blunts IRE1α RNase hyperactivity, reduces pancreatic ß cell apoptosis, and reverses type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse model. A mono-selective kinase inhibitor that allosterically attenuates IRE1α's RNase-KIRA8-also efficaciously reverses established diabetes in NOD mice by sparing ß cells and preserving their physiological function. Our data support a model wherein ER-stressed ß cells contribute to their own demise during T1D pathogenesis and implicate the ABL-IRE1α axis as a drug target for the treatment of an autoimmune disease.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 1/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos Endogâmicos NOD , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...