Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(3): 325-334, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34711990

RESUMO

Gene amplification drives oncogenesis in a broad spectrum of cancers. A number of drugs have been developed to inhibit the protein products of amplified driver genes, but their clinical efficacy is often hampered by drug resistance. Here, we introduce a therapeutic strategy for targeting cancer-associated gene amplifications by activating the DNA damage response with triplex-forming oligonucleotides (TFOs), which drive the induction of apoptosis in tumors, whereas cells without amplifications process lower levels of DNA damage. Focusing on cancers driven by HER2 amplification, we find that TFOs targeting HER2 induce copy number-dependent DNA double-strand breaks (DSBs) and activate p53-independent apoptosis in HER2-positive cancer cells and human tumor xenografts via a mechanism that is independent of HER2 cellular function. This strategy has demonstrated in vivo efficacy comparable to that of current precision medicines and provided a feasible alternative to combat drug resistance in HER2-positive breast and ovarian cancer models. These findings offer a general strategy for targeting tumors with amplified genomic loci.


Assuntos
Neoplasias da Mama , Amplificação de Genes , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dano ao DNA , Feminino , Genômica , Humanos , Oligonucleotídeos
2.
Mol Cancer Res ; 19(12): 2057-2067, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34535560

RESUMO

Exploitation of DNA repair defects has enabled major advances in treating specific cancers. Recent work discovered that the oncometabolite 2-hydroxyglutarate (2-HG), produced by neomorphic isocitrate dehydrogenase 1/2 (IDH1/2) mutations, confers a homology-directed repair (HDR) defect through 2-HG-induced histone hypermethylation masking HDR signaling. Here, we report that IDH1-mutant cancer cells are profoundly sensitive to the histone deacetylase inhibitor (HDACi) vorinostat, by further suppressing the residual HDR in 2-HG-producing cells. Vorinostat downregulates repair factors BRCA1 and RAD51 via disrupted E2F-factor regulation, causing increased DNA double-strand breaks, reduced DNA repair factor foci, and functional HDR deficiency even beyond 2-HG's effects. This results in greater cell death of IDH1-mutant cells and confers synergy with radiation and PARPi, both against cells in culture and patient-derived tumor xenografts. Our work identifies HDACi's utility against IDH1-mutant cancers, and presents IDH1/2 mutations as potential biomarkers to guide trials testing HDACi in gliomas and other malignancies. IMPLICATIONS: IDH1-mutant cells show profound vulnerability to HDACi treatment, alone and with PARPi and radiation, via HDR suppression, presenting IDH1/2 mutations as biomarkers for HDACi use in gliomas and other malignancies.


Assuntos
Reparo do DNA/genética , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Isocitrato Desidrogenase/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...