Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 409: 124606, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33246819

RESUMO

The impact of microplastic pollution on terrestrial biota is an emerging research area, and this is particularly so for soil biota. In this study, we addressed this knowledge gap by examining the impact of aged low-density polyethylene (LDPE) and polyester fibres (i.e. polyethylene terephthalate, PET) on a forest microbiome composition and activity. We also measured the corresponding physicochemical changes in the soil. We observed that bacteria community composition diverged in PET and LDPE treated soils from that of the control by day 42. These changes occurred at 0.2% and 0.4% (w/w) of PET and at 3% LDPE. Additionally, soil respiration was 8-fold higher in soil that received 3% LDPE compared to other treatments and control. There were no clear patterns linking these biological changes to physicochemical changes measured. Taken together, we concluded that microplastics aging in the environment may have evolutionary consequences for forest soil microbiome and there is immediate implication for climate change if the observed increase in soil respiration is reproducible in multiple ecosystems.


Assuntos
Microbiota , Poluentes do Solo , Ecossistema , Florestas , Microplásticos , Plásticos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Adv Mater ; 28(21): 4163, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27246920

RESUMO

An ambipolar organic field-effect transistor (OFET) based on poly(diketopyrrolopyrrole-terthiophene) (PDPPHD-T3) is shown by P. Sonar, H. Haick, and co-workers on page 4012 to sensitively detect xylene isomers at low to 40 ppm level in multiple sensing features. Combined with pattern-recognition algorithms, a sole ambipolar FET sensor, rather than arrays of sensors, is able to discriminate highly similar xylene structural isomers from each other.

3.
Adv Mater ; 28(21): 4012-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26996398

RESUMO

An ambipolar poly(diketopyrrolopyrrole-terthiophene)-based field-effect transistor (FET) sensitively detects xylene isomers at low ppm levels with multiple sensing features. Combined with pattern-recognition algorithms, a sole ambipolar FET sensor, rather than arrays of sensors, can discriminate highly similar xylene structural isomers from one another.

4.
J Nanosci Nanotechnol ; 15(9): 6957-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716268

RESUMO

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties have been found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites' thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...