Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(6): 3001-3017, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-34522950

RESUMO

The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.


Assuntos
Bacteriófagos , Liases , Aminoácidos/metabolismo , Bacteriófagos/genética , DNA/metabolismo , Timidina/metabolismo
2.
J Biol Chem ; 281(26): 17579-87, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16547354

RESUMO

The bacterial phosphoenolpyruvate (PEP):glycose phosphotransferase system (PTS) mediates uptake/phosphorylation of sugars. The transport of all PTS sugars requires Enzyme I (EI) and a phosphocarrier histidine protein of the PTS (HPr). The PTS is stringently regulated, and a potential mechanism is the monomer/dimer transition of EI, because only the dimer accepts the phosphoryl group from PEP. EI monomer consists of two major domains, at the N and C termini (EI-N and EI-C, respectively). EI-N accepts the phosphoryl group from phospho-HPr but not PEP. However, it is phosphorylated by PEP(Mg(2+)) when complemented with EI-C. Here we report that the phosphotransfer rate increases approximately 25-fold when HPr is added to a mixture of EI-N, EI-C, and PEP(Mg(2+)). A model to explain this effect is offered. Sedimentation equilibrium results show that the association constant for dimerization of EI-C monomers is 260-fold greater than the K(a) for native EI. The ligands have no detectable effect on the secondary structure of the dimer (far UV CD) but have profound effects on the tertiary structure as determined by near UV CD spectroscopy, thermal denaturation, sedimentation equilibrium and velocity, and intrinsic fluorescence of the 2 Trp residues. The binding of PEP requires Mg(2+). For example, there is no effect of PEP on the T(m), an increase of 7 degrees C in the presence of Mg(2+), and approximately 14 degrees C when both are present. Interestingly, the dissociation constants for each of the ligands from EI-C are approximately the same as the kinetic (K(m)) constants for the ligands in the complete PTS sugar phosphorylation assays.


Assuntos
Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases (Aceptor do Grupo Nitrogenado)/química , Fosfotransferases (Aceptor do Grupo Nitrogenado)/metabolismo , Ativação Enzimática/fisiologia , Cinética , Ligantes , Magnésio/metabolismo , Fosfoenolpiruvato/metabolismo , Fosforilação , Dobramento de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Temperatura
3.
PLoS Biol ; 3(4): e121, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15780005

RESUMO

Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.


Assuntos
Brugia Malayi/genética , Evolução Molecular , Genoma Bacteriano , Wolbachia/genética , Animais , Brugia Malayi/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Dados de Sequência Molecular , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...