Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Surg ; 7: 609836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330613

RESUMO

Introduction: The disciplines of 3D bioprinting and surgery have witnessed incremental transformations over the last century. 3D bioprinting is a convergence of biology and engineering technologies, mirroring the clinical need to produce viable biological tissue through advancements in printing, regenerative medicine and materials science. To outline the current and future challenges of 3D bioprinting technology in surgery. Methods: A comprehensive literature search was undertaken using the MEDLINE, EMBASE and Google Scholar databases between 2000 and 2019. A narrative synthesis of the resulting literature was produced to discuss 3D bioprinting, current and future challenges, the role in personalized medicine and transplantation surgery and the global 3D bioprinting market. Results: The next 20 years will see the advent of bioprinted implants for surgical use, however the path to clinical incorporation will be fraught with an array of ethical, regulatory and technical challenges of which each must be surmounted. Previous clinical cases where regulatory processes have been bypassed have led to poor outcomes and controversy. Speculated roles of 3D bioprinting in surgery include the production of de novo organs for transplantation and use of autologous cellular material for personalized medicine. The promise of these technologies has sparked an industrial revolution, leading to an exponential growth of the 3D bioprinting market worth billions of dollars. Conclusion: Effective translation requires the input of scientists, engineers, clinicians, and regulatory bodies: there is a need for a collaborative effort to translate this impactful technology into a real-world healthcare setting and potentially transform the future of surgery.

2.
Front Surg ; 7: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766275

RESUMO

Objective: The aim of this study was to determine the validity of using a carvable 3D printed rib model in combination with a 3D printed auricular framework to facilitate the teaching, training and planning of auricular reconstruction. Design: 3D printed costal cartilages from ribs 6-9 were produced using a FormLabs Form3 Printer and used to make negative molds. 2:1 silicone-cornstarch mixture was added to each mold to make 12 simulated 6-9th costal cartilages suitable for carving. 3D printed auricular frameworks were produced in polylactic acid using an Ultimaker 3 3D printer to demonstrate the component parts and constructed framework of an auricular reconstruction. Participants: Twelve plastic surgery trainees attended a workshop in which they each attempted auricular reconstruction using the carvable models and 3D printed plastic models as a guide. All candidates completed a pre- and post-training questionnaire to assess confidence and comprehension of auricular reconstruction, and the suitability of the models for facilitating this teaching. Results: Only 42% of trainees (n = 5) had observed an ear reconstruction in theater prior to the training course. Statistically significant improvements in the appreciation of the different components that make an auricular framework (p < 0.0001) and confidence in carving and handling costal cartilage (p < 0.0001) were noted following completion of the training. Highly significant improvements in comprehension of the approach to ear reconstruction (p = 0.006) and locating the subunits of a reconstructed ear from costal cartilage (p = 0.003) were also noted. 100% of participants felt the 3D printed teaching aids directly enhanced their learning. Conclusions: Ear reconstruction is a complex, time consuming multi-stage operation demanding significant amounts of experience, planning and an appreciation of the 3D chondrocutaneous structure. In this study we have demonstrated the value of 3D printing in producing a suitable simulated costal cartilage model and as an adjunct to comprehending and planning a framework for auricular reconstruction.

4.
Int Wound J ; 14(1): 112-124, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26833722

RESUMO

The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Procedimentos de Cirurgia Plástica/métodos , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Cirurgia Plástica/métodos , Animais , Humanos
5.
Gland Surg ; 5(2): 227-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27047789

RESUMO

The evolution of breast reconstruction and management of breast cancer has evolved significantly since the earliest descriptions in the Edwin Smith Papyrus (3,000 BC). The development of surgical and scientific expertise has changed the way that women are managed, and plastic surgeons are now able to offer a wide range of reconstructive options to suit individual needs. Beyond the gold standard autologous flap based reconstructions, regenerative therapies promise the elimination of donor site morbidity whilst providing equivalent aesthetic and functional outcomes. Future research aims to address questions regarding ideal cell source, optimisation of scaffold composition and interaction of de novo adipose tissue in the microenvironment of breast cancer.

6.
Stem Cell Res Ther ; 7: 19, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822227

RESUMO

Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.


Assuntos
Cartilagem da Orelha/fisiologia , Animais , Pavilhão Auricular/fisiologia , Humanos , Especificidade de Órgãos , Procedimentos de Cirurgia Plástica , Regeneração , Medicina Regenerativa , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...