Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Rheumatol ; 6(5): e300-e313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574743

RESUMO

Myeloperoxidase (MPO)-specific antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (MPO-ANCA-associated vasculitis) is one of two major ANCA-associated vasculitis variants characterised by systemic necrotising vasculitis with few or no immune deposits. MPO-ANCA-associated vasculitis predominantly affects small blood vessels and, in contrast to its counterpart proteinase 3-ANCA-associated vasculitis, is generally not associated with granulomatous inflammation. The kidneys and lungs are the most commonly affected organs. The pathogenesis of MPO-ANCA-associated vasculitis is characterised by loss of tolerance to the neutrophil enzyme MPO. This loss of tolerance leads to a chronic immunopathological response where neutrophils become both the target and effector of autoimmunity. MPO-ANCA drives neutrophil activation, leading in turn to tissue and organ damage. Clinical trials have improved the therapeutic approach to MPO-ANCA-associated vasculitis. However, there remains substantial unmet need regarding relapse frequency, toxicity of current treatment, and long-term morbidity. In this Series paper, we present the current state of research regarding pathogenesis, diagnosis, and treatment of MPO-ANCA-associated vasculitis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Peroxidase , Humanos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Peroxidase/imunologia
2.
Front Immunol ; 13: 1007078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389689

RESUMO

In the normal immune system, T cell activation is tightly regulated and controlled at several levels to ensure that activation occurs in the right context to prevent the development of pathologic conditions such as autoimmunity or other harmful immune responses. CD4+FoxP3+ regulatory T cells (Treg) are crucial for the regulation of T cell responses in the peripheral lymphatic organs and thus for the prevention and control of autoimmunity. In systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disease with complex etiology, a disbalance between Treg and pathogenic effector/memory CD4+ T cells develops during disease progression indicating that gradual loss of control over T cell activation is an important event in the immune pathogenesis. This progressive failure to adequately regulate the activation of autoreactive T cells facilitates chronic activation and effector/memory differentiation of pathogenic T cells, which are considered to contribute significantly to the induction and perpetuation of autoimmune processes and tissue inflammation in SLE. However, in particular in humans, little is known about the factors which drive the escape from immune regulation and the chronicity of pathogenic T cell responses in an early stage of autoimmune disease when clinical symptoms are still unapparent. Here we briefly summarize important findings and discuss current views and models on the mechanisms related to the dysregulation of T cell responses which promotes chronicity and pathogenic memory differentiation with a focus on the early stage of disease in lupus-prone individuals.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Humanos , Linfócitos T Reguladores , Ativação Linfocitária , Diferenciação Celular
3.
Biomedicines ; 10(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36140251

RESUMO

Systemic sclerosis (SSc) is a rare connective tissue disorder characterized by immune dysregulation evoking the pathophysiological triad of inflammation, fibrosis and vasculopathy. In SSc, several alterations in the B-cell compartment have been described, leading to polyclonal B-cell hyperreactivity, hypergammaglobulinemia and autoantibody production. Autoreactive B cells and autoantibodies promote and maintain pathologic mechanisms. In addition, autoantibodies in SSc are important biomarkers for predicting clinical phenotype and disease progression. Autoreactive B cells and autoantibodies represent potentially promising targets for therapeutic approaches including B-cell-targeting therapies, as well as strategies for unselective and selective removal of autoantibodies. In this review, we present mechanisms of the innate immune system leading to the generation of autoantibodies, alterations of the B-cell compartment in SSc, autoantibodies as biomarkers and autoantibody-mediated pathologies in SSc as well as potential therapeutic approaches to target these.

5.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204207

RESUMO

ANCA-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). While systemic vasculitis is a hallmark of all AAV, GPA is characterized by extravascular granulomatous inflammation, preferentially affecting the respiratory tract. The mechanisms underlying the emergence of neutrophilic microabscesses; the appearance of multinucleated giant cells; and subsequent granuloma formation, finally leading to scarred or destroyed tissue in GPA, are still incompletely understood. This review summarizes findings describing the presence and function of molecules and cells contributing to granulomatous inflammation in the respiratory tract and to renal inflammation observed in GPA. In addition, factors affecting or promoting the development of granulomatous inflammation such as microbial infections, the nasal microbiome, and the release of damage-associated molecular patterns (DAMP) are discussed. Further, on the basis of numerous results, we argue that, in situ, various ways of exposure linked with a high number of infiltrating proteinase 3 (PR3)- and myeloperoxidase (MPO)-expressing leukocytes lower the threshold for the presentation of an altered PR3 and possibly also of MPO, provoking the local development of ANCA autoimmune responses, aided by the formation of ectopic lymphoid structures. Although extravascular granulomatous inflammation is unique to GPA, similar molecular and cellular patterns can be found in both the respiratory tract and kidney tissue of GPA and MPA patients; for example, the antimicrobial peptide LL37, CD163+ macrophages, or regulatory T cells. Therefore, we postulate that granulomatous inflammation in GPA or PR3-AAV is intertwined with autoimmune and destructive mechanisms also seen at other sites.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/etiologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Suscetibilidade a Doenças , Granulomatose com Poliangiite/etiologia , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Biomarcadores , Movimento Celular/imunologia , Gerenciamento Clínico , Granulomatose com Poliangiite/diagnóstico , Granulomatose com Poliangiite/metabolismo , Granulomatose com Poliangiite/terapia , Humanos , Imunidade Inata , Imuno-Histoquímica/métodos , Especificidade de Órgãos/imunologia
6.
Front Immunol ; 12: 648408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868284

RESUMO

Regulatory T cells (Treg) are crucial for the maintenance of peripheral tolerance and for the control of ongoing inflammation and autoimmunity. The cytokine interleukin-2 (IL-2) is essentially required for the growth and survival of Treg in the peripheral lymphatic tissues and thus plays a vital role in the biology of Treg. Most autoimmune and rheumatic diseases exhibit disturbances in Treg biology either at a numerical or functional level resulting in an imbalance between protective and pathogenic immune cells. In addition, in some autoimmune diseases, a relative deficiency of IL-2 develops during disease pathogenesis leading to a disturbance of Treg homeostasis, which further amplifies the vicious cycle of tolerance breach and chronic inflammation. Low-dose IL-2 therapy aims either to compensate for this IL-2 deficiency to restore a physiological state or to strengthen the Treg population in order to be more effective in counter-regulating inflammation while avoiding global immunosuppression. Here we highlight key findings and summarize recent advances in the clinical translation of low-dose IL-2 therapy for the treatment of autoimmune and rheumatic diseases.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Imunoterapia/métodos , Interleucina-2/administração & dosagem , Doenças Reumáticas/imunologia , Doenças Reumáticas/terapia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Tolerância Imunológica , Interleucina-2/efeitos adversos , Interleucina-2/deficiência , Interleucina-2/imunologia , Camundongos , Resultado do Tratamento
7.
Front Immunol ; 11: 596772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362780

RESUMO

Food allergies are common, costly and potentially life-threatening disorders. They are driven by Th2, but inhibited by Th1 reactions. There is also evidence indicating that IL-2 agonist treatment inhibits allergic sensitization through expansion of regulatory T cells. Here, we tested the impact of an IL-2 agonist in a novel model for food allergy to hen´s egg in mice sensitized without artificial adjuvants. Prophylactic IL-2 agonist treatment expanded Treg populations and inhibited allergen-specific sensitization. However, IL-2 agonist treatment of already sensitized mice increased mast cell responses and allergic anaphylaxis upon allergen re-challenge. These effects depended on allergen-specific IgE and were mediated through IFN-γ, as shown by IgE transfer and blockade of IFN-γ with monoclonal antibodies. These results suggest that although shifting the allergic reaction toward a Treg/Th1 response inhibits allergic sensitization, the prototypic Th1 cytokine IFN-γ promotes mast cell activation and allergen-induced anaphylaxis in individuals that are already IgE-sensitized. Hence, while a Th1 response can prevent the development of food allergy, IFN-γ has the ability to exacerbate already established food allergy.


Assuntos
Alérgenos/imunologia , Anafilaxia/etiologia , Anafilaxia/metabolismo , Alimentos/efeitos adversos , Interferon gama/metabolismo , Interleucina-2/agonistas , Animais , Galinhas , Citocinas/metabolismo , Modelos Animais de Doenças , Clara de Ovo/efeitos adversos , Feminino , Hipersensibilidade Alimentar/imunologia , Imunização , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...