Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 15: 313-325, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753413

RESUMO

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tiazóis/farmacologia , Antivirais/farmacologia , Células HCT116 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica
2.
J Med Chem ; 67(5): 3711-3726, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417040

RESUMO

Macrocycles have recognized therapeutic potential, but their limited cellular permeability can hinder their development as oral drugs. To better understand the structure-permeability relationship of heterocycle-containing, semipeptidic macrocycles, a library was synthesized. These compounds were created by developing two novel reactions described herein: the reduction of activated oximes by LiBH4 and the aqueous reductive mono-N-alkylation of aldehydes using catalytic SmI2 and stoichiometric Zn. The permeability of the macrocycles was evaluated through a parallel artificial membrane permeability assay (PAMPA), and the results indicated that macrocycles with a furan incorporated into the structure have better passive permeability than those with a pyrrole moiety. Compounds bearing a 2,5-disubstituted pyrrole (endo orientation) were shown to be implicated in intramolecular H-bonds, enhancing their permeability. This study highlighted the impact of heterocycles moieties in semipeptides, creating highly permeable macrocycles, thus showing promising avenues for passive diffusion of drugs beyond the rule-of-five chemical space.


Assuntos
Membranas Artificiais , Água , Permeabilidade , Permeabilidade da Membrana Celular , Difusão
3.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446619

RESUMO

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Assuntos
Alcaloides , Saúde da População , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humanos , Solanum/metabolismo , Alcaloides/química , Solanum tuberosum/metabolismo , Solanum nigrum/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1865(7): 184196, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37400050

RESUMO

Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules. Although constrained by macrocyclization, they generally retain some conformational flexibility associated with an enhanced ability to cross biological membranes. In this study, we investigated the relationship between the structure of semi-peptidic macrocycles and their membrane permeability through structural modifications. Based on a scaffold of four amino acids and a linker, we synthesized 56 macrocycles incorporating modifications in either stereochemistry, N-methylation, or lipophilicity and assessed their passive permeability using the parallel artificial membrane permeability assay (PAMPA). Our results show that some semi-peptidic macrocycles have adequate passive permeability even with properties outside the Lipinski rule of five. We found that N-methylation in position 2 and the addition of lipophilic groups to the side chain of tyrosine led to an improvement in permeability with a decrease in tPSA and 3D-PSA. This enhancement could be attributed to the shielding effect of the lipophilic group on some regions of the macrocycle, which in turn, facilitates a favorable macrocycle conformation for permeability, suggesting some degree of chameleonic behavior.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Conformação Molecular , Permeabilidade , Tirosina
5.
Free Radic Biol Med ; 206: 111-124, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385568

RESUMO

An excessive blood level of homocysteine (HcySH) is associated with numerous cardiovascular and neurodegenerative disease conditions. It has been suggested that direct S-homocysteinylation, of proteins by HcySH, or N-homosteinylation by homocysteine thiolactone (HTL) could play a causative role in these maladies. In contrast, ascorbic acid (AA) plays a significant role in oxidative stress prevention. AA is oxidized to dehydroascorbic acid (DHA) and if not rapidly reduced back to AA may degrade to reactive carbonyl products. In the present work, DHA is shown to react with HTL to produce a spiro bicyclic ring containing a six-membered thiazinane-carboxylic acid moiety. This reaction product is likely formed by initial imine condensation and subsequent hemiaminal product followed by HTL ring opening and intramolecular nucleophilic attack of the resulting thiol anion to form the spiro product. The reaction product was determined to have an accurate mass of 291.0414 and a molecular composition C10H13NO7S containing five double bond equivalents. We structurally characterized the reaction product using a combination of accurate mass tandem mass spectrometry, 1D and 2D-nuclear magnetic resonance. We also demonstrated that formation of the reaction product prevented peptide and protein N-homocysteinylation by HTL using a model peptide and α-lactalbumin. Furthermore, the reaction product is formed in Jurkat cells when exposed to HTL and DHA.


Assuntos
Ácido Desidroascórbico , Doenças Neurodegenerativas , Humanos , Peptídeos , Homocisteína
6.
J Med Chem ; 64(9): 5365-5383, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33750117

RESUMO

Incorporating small modifications to peptidic macrocycles can have a major influence on their properties. For instance, N-methylation has been shown to impact permeability. A better understanding of the relationship between permeability and structure is of key importance as peptidic drugs are often associated with unfavorable pharmacokinetic profiles. Starting from a semipeptidic macrocycle backbone composed of a tripeptide tethered head-to-tail with an alkyl linker, we investigated two small changes: peptide-to-peptoid substitution and various methyl placements on the nonpeptidic linker. Implementing these changes in parallel, we created a collection of 36 compounds. Their permeability was then assessed in parallel artificial membrane permeability assay (PAMPA) and Caco-2 assays. Our results show a systematic improvement in permeability associated with one peptoid position in the cycle, while the influence of methyl substitution varies on a case-by-case basis. Using a combination of molecular dynamics simulations and NMR measurements, we offer hypotheses to explain such behavior.


Assuntos
Compostos Macrocíclicos/química , Peptidomiméticos/química , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Compostos Macrocíclicos/metabolismo , Compostos Macrocíclicos/farmacologia , Espectroscopia de Ressonância Magnética , Metilação , Conformação Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacologia
7.
J Med Chem ; 63(13): 6774-6783, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453569

RESUMO

We herein report the first thorough analysis of the structure-permeability relationship of semipeptidic macrocycles. In total, 47 macrocycles were synthesized using a hybrid solid-phase/solution strategy, and then their passive and cellular permeability was assessed using the parallel artificial membrane permeability assay (PAMPA) and Caco-2 assay, respectively. The results indicate that semipeptidic macrocycles generally possess high passive permeability based on the PAMPA, yet their cellular permeability is governed by efflux, as reported in the Caco-2 assay. Structural variations led to tractable structure-permeability and structure-efflux relationships, wherein the linker length, stereoinversion, N-methylation, and peptoids site-specifically impact the permeability and efflux. Extensive nuclear magnetic resonance, molecular dynamics, and ensemble-based three-dimensional polar surface area (3D-PSA) studies showed that ensemble-based 3D-PSA is a good predictor of passive permeability.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Peptídeos/química , Células CACO-2 , Humanos , Membranas Artificiais , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...