Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nucleic Acids Res ; 52(D1): D33-D43, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37994677

RESUMO

The National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, SciENcv, the NIH Comparative Genomics Resource (CGR), NCBI Virus, SRA, RefSeq, foreign contamination screening tools, Taxonomy, iCn3D, ClinVar, GTR, MedGen, dbSNP, ALFA, ClinicalTrials.gov, Pathogen Detection, antimicrobial resistance resources, and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , National Library of Medicine (U.S.) , Biotecnologia/instrumentação , Bases de Dados de Ácidos Nucleicos , Internet , Estados Unidos
2.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930897

RESUMO

MOTIVATION: Information retrieval (IR) is essential in biomedical knowledge acquisition and clinical decision support. While recent progress has shown that language model encoders perform better semantic retrieval, training such models requires abundant query-article annotations that are difficult to obtain in biomedicine. As a result, most biomedical IR systems only conduct lexical matching. In response, we introduce MedCPT, a first-of-its-kind Contrastively Pre-trained Transformer model for zero-shot semantic IR in biomedicine. RESULTS: To train MedCPT, we collected an unprecedented scale of 255 million user click logs from PubMed. With such data, we use contrastive learning to train a pair of closely integrated retriever and re-ranker. Experimental results show that MedCPT sets new state-of-the-art performance on six biomedical IR tasks, outperforming various baselines including much larger models, such as GPT-3-sized cpt-text-XL. In addition, MedCPT also generates better biomedical article and sentence representations for semantic evaluations. As such, MedCPT can be readily applied to various real-world biomedical IR tasks. AVAILABILITY AND IMPLEMENTATION: The MedCPT code and model are available at https://github.com/ncbi/MedCPT.


Assuntos
Armazenamento e Recuperação da Informação , Semântica , Idioma , Processamento de Linguagem Natural , PubMed , Literatura de Revisão como Assunto
3.
ArXiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904734

RESUMO

ChatGPT has drawn considerable attention from both the general public and domain experts with its remarkable text generation capabilities. This has subsequently led to the emergence of diverse applications in the field of biomedicine and health. In this work, we examine the diverse applications of large language models (LLMs), such as ChatGPT, in biomedicine and health. Specifically we explore the areas of biomedical information retrieval, question answering, medical text summarization, information extraction, and medical education, and investigate whether LLMs possess the transformative power to revolutionize these tasks or whether the distinct complexities of biomedical domain presents unique challenges. Following an extensive literature survey, we find that significant advances have been made in the field of text generation tasks, surpassing the previous state-of-the-art methods. For other applications, the advances have been modest. Overall, LLMs have not yet revolutionized biomedicine, but recent rapid progress indicates that such methods hold great potential to provide valuable means for accelerating discovery and improving health. We also find that the use of LLMs, like ChatGPT, in the fields of biomedicine and health entails various risks and challenges, including fabricated information in its generated responses, as well as legal and privacy concerns associated with sensitive patient data. We believe this survey can provide a comprehensive and timely overview to biomedical researchers and healthcare practitioners on the opportunities and challenges associated with using ChatGPT and other LLMs for transforming biomedicine and health.

4.
Nucleic Acids Res ; 51(D1): D29-D38, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370100

RESUMO

The National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases. New resources include the Comparative Genome Resource (CGR) and the BLAST ClusteredNR database. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, IgBLAST, GDV, RefSeq, NCBI Virus, GenBank type assemblies, iCn3D, ClinVar, GTR, dbGaP, ALFA, ClinicalTrials.gov, Pathogen Detection, antimicrobial resistance resources, and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Estados Unidos , National Library of Medicine (U.S.) , Alinhamento de Sequência , Biotecnologia , Internet
5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38168838

RESUMO

ChatGPT has drawn considerable attention from both the general public and domain experts with its remarkable text generation capabilities. This has subsequently led to the emergence of diverse applications in the field of biomedicine and health. In this work, we examine the diverse applications of large language models (LLMs), such as ChatGPT, in biomedicine and health. Specifically, we explore the areas of biomedical information retrieval, question answering, medical text summarization, information extraction and medical education and investigate whether LLMs possess the transformative power to revolutionize these tasks or whether the distinct complexities of biomedical domain presents unique challenges. Following an extensive literature survey, we find that significant advances have been made in the field of text generation tasks, surpassing the previous state-of-the-art methods. For other applications, the advances have been modest. Overall, LLMs have not yet revolutionized biomedicine, but recent rapid progress indicates that such methods hold great potential to provide valuable means for accelerating discovery and improving health. We also find that the use of LLMs, like ChatGPT, in the fields of biomedicine and health entails various risks and challenges, including fabricated information in its generated responses, as well as legal and privacy concerns associated with sensitive patient data. We believe this survey can provide a comprehensive and timely overview to biomedical researchers and healthcare practitioners on the opportunities and challenges associated with using ChatGPT and other LLMs for transforming biomedicine and health.


Assuntos
Armazenamento e Recuperação da Informação , Idioma , Humanos , Privacidade , Pesquisadores
6.
J Biomed Inform ; 134: 104211, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152950

RESUMO

OBJECTIVE: A significant number of recent articles in PubMed have full text available in PubMed Central®, and the availability of full texts has been consistently growing. However, it is not currently possible for a user to simultaneously query the contents of both databases and receive a single integrated search result. In this study, we investigate how to score full text articles given a multitoken query and how to combine those full text article scores with scores originating from abstracts and achieve an overall improved retrieval performance. MATERIALS AND METHODS: For scoring full text articles, we propose a method to combine information coming from different sections by converting the traditionally used BM25 scores into log odds ratio scores which can be treated uniformly. We further propose a method that successfully combines scores from two heterogenous retrieval sources - full text articles and abstract only articles - by balancing the contributions of their respective scores through a probabilistic transformation. We use PubMed click data that consists of queries sampled from PubMed user logs along with a subset of retrieved and clicked documents to train the probabilistic functions and to evaluate retrieval effectiveness. RESULTS AND CONCLUSIONS: Random ranking achieves 0.579 MAP score on our PubMed click data. BM25 ranking on PubMed abstracts improves the MAP by 10.6%. For full text documents, experiments confirm that BM25 section scores are of different value depending on the section type and are not directly comparable. Naïvely using the body text of articles along with abstract text degrades the overall quality of the search. The proposed log odds ratio scores normalize and combine the contributions of occurrences of query tokens in different sections. By including full text where available, we gain another 0.67%, or 7% relative improvement over abstract alone. We find an advantage in the more accurate estimate of the value of BM25 scores depending on the section from which they were produced. Taking the sum of top three section scores performs the best.


Assuntos
Gerenciamento de Dados , Armazenamento e Recuperação da Informação , PubMed
7.
Nucleic Acids Res ; 50(D1): D20-D26, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850941

RESUMO

The National Center for Biotechnology Information (NCBI) produces a variety of online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for the most of these databases. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, RefSeq, SRA, Virus, dbSNP, dbVar, ClinicalTrials.gov, MMDB, iCn3D and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Biotecnologia/tendências , Bases de Dados Genéticas/tendências , Bases de Dados de Compostos Químicos , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Humanos , Internet , National Library of Medicine (U.S.) , PubMed , Estados Unidos
8.
Sci Data ; 8(1): 91, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767203

RESUMO

Automatically identifying chemical and drug names in scientific publications advances information access for this important class of entities in a variety of biomedical disciplines by enabling improved retrieval and linkage to related concepts. While current methods for tagging chemical entities were developed for the article title and abstract, their performance in the full article text is substantially lower. However, the full text frequently contains more detailed chemical information, such as the properties of chemical compounds, their biological effects and interactions with diseases, genes and other chemicals. We therefore present the NLM-Chem corpus, a full-text resource to support the development and evaluation of automated chemical entity taggers. The NLM-Chem corpus consists of 150 full-text articles, doubly annotated by ten expert NLM indexers, with ~5000 unique chemical name annotations, mapped to ~2000 MeSH identifiers. We also describe a substantially improved chemical entity tagger, with automated annotations for all of PubMed and PMC freely accessible through the PubTator web-based interface and API. The NLM-Chem corpus is freely available.


Assuntos
Mineração de Dados/métodos , Compostos Orgânicos/classificação , Preparações Farmacêuticas/classificação , Software , Terminologia como Assunto , PubMed
9.
Nucleic Acids Res ; 49(D1): D10-D17, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33095870

RESUMO

The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 34 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Custom implementations of the BLAST program provide sequence-based searching of many specialized datasets. New resources released in the past year include a new PubMed interface and NCBI datasets. Additional resources that were updated in the past year include PMC, Bookshelf, Genome Data Viewer, SRA, ClinVar, dbSNP, dbVar, Pathogen Detection, BLAST, Primer-BLAST, IgBLAST, iCn3D and PubChem. All of these resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , National Library of Medicine (U.S.) , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Genômica/métodos , Humanos , PubMed , Estados Unidos
10.
Nucleic Acids Res ; 48(D1): D9-D16, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31602479

RESUMO

The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Custom implementations of the BLAST program provide sequence-based searching of many specialized datasets. New resources released in the past year include a new PubMed interface, a sequence database search and a gene orthologs page. Additional resources that were updated in the past year include PMC, Bookshelf, My Bibliography, Assembly, RefSeq, viral genomes, the prokaryotic genome annotation pipeline, Genome Workbench, dbSNP, BLAST, Primer-BLAST, IgBLAST and PubChem. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/organização & administração , Bases de Dados Genéticas , National Library of Medicine (U.S.) , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Humanos , PubMed , Estados Unidos , Navegador
11.
Nucleic Acids Res ; 47(W1): W594-W599, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31020319

RESUMO

Literature search is a routine practice for scientific studies as new discoveries build on knowledge from the past. Current tools (e.g. PubMed, PubMed Central), however, generally require significant effort in query formulation and optimization (especially in searching the full-length articles) and do not allow direct retrieval of specific statements, which is key for tasks such as comparing/validating new findings with previous knowledge and performing evidence attribution in biocuration. Thus, we introduce LitSense, which is the first web-based system that specializes in sentence retrieval for biomedical literature. LitSense provides unified access to PubMed and PMC content with over a half-billion sentences in total. Given a query, LitSense returns best-matching sentences using both a traditional term-weighting approach that up-weights sentences that contain more of the rare terms in the user query as well as a novel neural embedding approach that enables the retrieval of semantically relevant results without explicit keyword match. LitSense provides a user-friendly interface that assists its users to quickly browse the returned sentences in context and/or further filter search results by section or publication date. LitSense also employs PubTator to highlight biomedical entities (e.g. gene/proteins) in the sentences for better result visualization. LitSense is freely available at https://www.ncbi.nlm.nih.gov/research/litsense.


Assuntos
Mineração de Dados/métodos , Software , Indexação e Redação de Resumos , PubMed , Publicações
12.
Bioinformatics ; 35(18): 3533-3535, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715220

RESUMO

MOTIVATION: Interest in text mining full-text biomedical research articles is growing. To facilitate automated processing of nearly 3 million full-text articles (in PubMed Central® Open Access and Author Manuscript subsets) and to improve interoperability, we convert these articles to BioC, a community-driven simple data structure in either XML or JavaScript Object Notation format for conveniently sharing text and annotations. RESULTS: The resultant articles can be downloaded via both File Transfer Protocol for bulk access and a Web API for updates or a more focused collection. Since the availability of the Web API in 2017, our BioC collection has been widely used by the research community. AVAILABILITY AND IMPLEMENTATION: https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC/.


Assuntos
Mineração de Dados , Algoritmos , Pesquisa Biomédica , PubMed
13.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689846

RESUMO

The Precision Medicine Initiative is a multicenter effort aiming at formulating personalized treatments leveraging on individual patient data (clinical, genome sequence and functional genomic data) together with the information in large knowledge bases (KBs) that integrate genome annotation, disease association studies, electronic health records and other data types. The biomedical literature provides a rich foundation for populating these KBs, reporting genetic and molecular interactions that provide the scaffold for the cellular regulatory systems and detailing the influence of genetic variants in these interactions. The goal of BioCreative VI Precision Medicine Track was to extract this particular type of information and was organized in two tasks: (i) document triage task, focused on identifying scientific literature containing experimentally verified protein-protein interactions (PPIs) affected by genetic mutations and (ii) relation extraction task, focused on extracting the affected interactions (protein pairs). To assist system developers and task participants, a large-scale corpus of PubMed documents was manually annotated for this task. Ten teams worldwide contributed 22 distinct text-mining models for the document triage task, and six teams worldwide contributed 14 different text-mining systems for the relation extraction task. When comparing the text-mining system predictions with human annotations, for the triage task, the best F-score was 69.06%, the best precision was 62.89%, the best recall was 98.0% and the best average precision was 72.5%. For the relation extraction task, when taking homologous genes into account, the best F-score was 37.73%, the best precision was 46.5% and the best recall was 54.1%. Submitted systems explored a wide range of methods, from traditional rule-based, statistical and machine learning systems to state-of-the-art deep learning methods. Given the level of participation and the individual team results we find the precision medicine track to be successful in engaging the text-mining research community. In the meantime, the track produced a manually annotated corpus of 5509 PubMed documents developed by BioGRID curators and relevant for precision medicine. The data set is freely available to the community, and the specific interactions have been integrated into the BioGRID data set. In addition, this challenge provided the first results of automatically identifying PubMed articles that describe PPI affected by mutations, as well as extracting the affected relations from those articles. Still, much progress is needed for computer-assisted precision medicine text mining to become mainstream. Future work should focus on addressing the remaining technical challenges and incorporating the practical benefits of text-mining tools into real-world precision medicine information-related curation.


Assuntos
Mineração de Dados/métodos , Bases de Dados de Proteínas , Mutação , Medicina de Precisão/métodos , Mapas de Interação de Proteínas , Software , Biologia Computacional/métodos , Humanos , Mutação/genética , Mutação/fisiologia , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia
14.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010750

RESUMO

PubMed® is a search engine providing access to a collection of over 27 million biomedical bibliographic records as of 2017. PubMed processes millions of queries a day, and understanding these queries is one of the main building blocks for successful information retrieval. In this work, we present Field Sensor, a domain-specific tool for understanding the composition and predicting the user intent of PubMed queries. Given a query, the Field Sensor infers a field for each token or sequence of tokens in a query in multi-step process that includes syntactic chunking, rule-based tagging and probabilistic field prediction. In this work, the fields of interest are those associated with (meta-)data elements of each PubMed record such as article title, abstract, author name(s), journal title, volume, issue, page and date. We evaluate the accuracy of our algorithm on a human-annotated corpus of 10 000 PubMed queries, as well as a new machine-annotated set of 103 000 PubMed queries. The Field Sensor achieves an accuracy of 93 and 91% on the two corresponding corpora and finds that nearly half of all searches are navigational (e.g. author searches, article title searches etc.) and half are informational (e.g. topical searches). The Field Sensor has been integrated into PubMed since June 2017 to detect informational queries for which results sorted by relevance can be suggested as an alternative to those sorted by the default date sort. In addition, the composition of PubMed queries as computed by the Field Sensor proves to be essential for understanding how users query PubMed.


Assuntos
Algoritmos , PubMed , Ferramenta de Busca , Curadoria de Dados , Publicações , Padrões de Referência
15.
Sci Data ; 5: 180104, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29893755

RESUMO

In biomedicine, key concepts are often expressed by multiple words (e.g., 'zinc finger protein'). Previous work has shown treating a sequence of words as a meaningful unit, where applicable, is not only important for human understanding but also beneficial for automatic information seeking. Here we present a collection of PubMed® Phrases that are beneficial for information retrieval and human comprehension. We define these phrases as coherent chunks that are logically connected. To collect the phrase set, we apply the hypergeometric test to detect segments of consecutive terms that are likely to appear together in PubMed. These text segments are then filtered using the BM25 ranking function to ensure that they are beneficial from an information retrieval perspective. Thus, we obtain a set of 705,915 PubMed Phrases. We evaluate the quality of the set by investigating PubMed user click data and manually annotating a sample of 500 randomly selected noun phrases. We also analyze and discuss the usage of these PubMed Phrases in literature search.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28077563

RESUMO

A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein-protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future uses of the BioC-BioGRID corpus are detailed in this report.Database URL: http://bioc.sourceforge.net/BioC-BioGRID.html.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Bases de Dados Genéticas , Proteínas/genética , Proteínas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-27589962

RESUMO

BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento Eletrônico de Dados/métodos , Disseminação de Informação/métodos
18.
BMC Bioinformatics ; 16 Suppl 16: S2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26551594

RESUMO

IN BIONLP-ST 2013: We participated in the BioNLP 2013 shared tasks on event extraction. Our extraction method is based on the search for an approximate subgraph isomorphism between key context dependencies of events and graphs of input sentences. Our system was able to address both the GENIA (GE) task focusing on 13 molecular biology related event types and the Cancer Genetics (CG) task targeting a challenging group of 40 cancer biology related event types with varying arguments concerning 18 kinds of biological entities. In addition to adapting our system to the two tasks, we also attempted to integrate semantics into the graph matching scheme using a distributional similarity model for more events, and evaluated the event extraction impact of using paths of all possible lengths as key context dependencies beyond using only the shortest paths in our system. We achieved a 46.38% F-score in the CG task (ranking 3rd) and a 48.93% F-score in the GE task (ranking 4th). AFTER BIONLP-ST 2013: We explored three ways to further extend our event extraction system in our previously published work: (1) We allow non-essential nodes to be skipped, and incorporated a node skipping penalty into the subgraph distance function of our approximate subgraph matching algorithm. (2) Instead of assigning a unified subgraph distance threshold to all patterns of an event type, we learned a customized threshold for each pattern. (3) We implemented the well-known Empirical Risk Minimization (ERM) principle to optimize the event pattern set by balancing prediction errors on training data against regularization. When evaluated on the official GE task test data, these extensions help to improve the extraction precision from 62% to 65%. However, the overall F-score stays equivalent to the previous performance due to a 1% drop in recall.


Assuntos
Algoritmos , Armazenamento e Recuperação da Informação , Publicações , Bases de Dados como Assunto , Processamento de Linguagem Natural , Estatística como Assunto
19.
Artigo em Inglês | MEDLINE | ID: mdl-24980129

RESUMO

BioC is a new simple XML format for sharing biomedical text and annotations and libraries to read and write that format. This promotes the development of interoperable tools for natural language processing (NLP) of biomedical text. The interoperability track at the BioCreative IV workshop featured contributions using or highlighting the BioC format. These contributions included additional implementations of BioC, many new corpora in the format, biomedical NLP tools consuming and producing the format and online services using the format. The ease of use, broad support and rapidly growing number of tools demonstrate the need for and value of the BioC format. Database URL: http://bioc.sourceforge.net/.


Assuntos
Biologia Computacional , Mineração de Dados , Processamento de Linguagem Natural , Software , Pesquisa Biomédica , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Internet
20.
Artigo em Inglês | MEDLINE | ID: mdl-24914232

RESUMO

BioC is a recently created XML format to share text data and annotations, and an accompanying input/output library to promote interoperability of data and tools for natural language processing of biomedical text. This article reports the use of BioC to address a common challenge in processing biomedical text information-that of frequent entity name abbreviation. We selected three different abbreviation definition identification modules, and used the publicly available BioC code to convert these independent modules into BioC-compatible components that interact seamlessly with BioC-formatted data, and other BioC-compatible modules. In addition, we consider four manually annotated corpora of abbreviations in biomedical text: the Ab3P corpus of 1250 PubMed abstracts, the BIOADI corpus of 1201 PubMed abstracts, the old MEDSTRACT corpus of 199 PubMed(®) citations and the Schwartz and Hearst corpus of 1000 PubMed abstracts. Annotations in these corpora have been re-evaluated by four annotators and their consistency and quality levels have been improved. We converted them to BioC-format and described the representation of the annotations. These corpora are used to measure the three abbreviation-finding algorithms and the results are given. The BioC-compatible modules, when compared with their original form, have no difference in their efficiency, running time or any other comparable aspects. They can be conveniently used as a common pre-processing step for larger multi-layered text-mining endeavors. Database URL: Code and data are available for download at the BioC site: http://bioc.sourceforge.net.


Assuntos
Abreviaturas como Assunto , Ontologias Biológicas , Mineração de Dados , Processamento de Linguagem Natural , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...