Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 334-335: 207-13, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15504507

RESUMO

The development and maintenance of the atmospheric boundary layer (ABL) plays a key role in the distribution of atmospheric constituents, especially in a polluted urban area. In particular, the ABL has a direct impact on the concentration and transformation of pollutants. In this work, in order to analyze the different mechanisms which control the boundary layer growth, we have simulated by means of the non-hydrostatic model MM5 several boundary layer observed in the city of Barcelona (Spain). Sensitivity analysis of the modelled ABL is carried out by using various descriptions of the planetary boundary layer (PBL). Direct and continuous measurements of the boundary layer depth taken by a lidar are used to evaluate the results obtained by the model.

2.
Appl Opt ; 39(33): 6049-57, 2000 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18354610

RESUMO

The slope method has customarily been used and is still used for inversion of atmospheric optical parameters, extinction, and backscatter in homogeneous atmospheres from lidar returns. Our aim is to study the underlying statistics of the old slope method and ultimately to compare its inversion performance with that of the present-day nonlinear least-squares solution (the so-called exponential-curve fitting). The contents are twofold: First, an analytical study is conducted to characterize the bias and the mean-square-estimation error of the regression operator, which permits estimation of the optical parameters from the logarithm of the range-compensated lidar return. Second, universal plots for most short- and far-range tropospheric backscatter lidars are presented as a rule of thumb for obtaining the optimum regression interval length that yields unbiased estimates. As a result, the simple graphic basis of the slope method is still maintained, and its inversion performance improves up to that of the present-day computer-oriented exponential-curve fitting, which ends the controversy between these two algorithms.

3.
Appl Opt ; 38(15): 3175-89, 1999 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18319906

RESUMO

A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-backscatter lidar returns is treated by means of an extended Kalman filter (EKF). The EKF approach enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas those procedures are inherently not adaptable because independent inversions are performed for each return signal and neither the statistics of the signals nor a priori uncertainties (e.g., boundary calibrations) are taken into account, in the case of the Kalman filter the filter updates itself because it is weighted by the imbalance between the a priori estimates of the optical parameters (i.e., past inversions) and the new estimates based on a minimum-variance criterion, as long as there are different lidar returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric evolution; the performance of this approach is limited only by the quality and availability of the a priori information and the accuracy of the atmospheric model used. The study ends with an encouraging practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our premises at the Polytechnic University of Catalonia, Barcelona.

4.
Appl Opt ; 38(21): 4461-74, 1999 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18323930

RESUMO

Here we depart from the inhomogeneous solution of a lidar equation using the backward inversion algorithm that is nowadays generally referred to as the Klett method. In particular, we develop an error sensitivity study that relates errors in the user-input parameters boundary extinction and exponential term in the extinction-to-backscatter relationship to errors in the inverted extinction profile. The validity of the analysis presented is limited only by the validity of application of the inversion algorithm itself, its numerical performance having been tested for optical depths in the 0.01-10 range. Toward this end, we focus on an introductory background about how uncertainties in these two parameters can apply to a family of inverted extinction profiles rather than a single profile and on its range-dependent behavior as a function of the optical thickness of the lidar inversion range. Next, we performed a mathematical study to derive the error span of the inverted extinction profile that is due to uncertainties in the above-mentioned user calibration parameters. This takes the form of upper and lower range-dependent error bounds. Finally, appropriate inversion plots are presented as application examples of this study to a parameterized set of atmospheric scenes inverted from both synthesized elastic-backscatter lidar signals and a live signal.

5.
Appl Opt ; 37(12): 2199-206, 1998 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18273142

RESUMO

The inversion of lidar returns from homogeneous atmospheres has been done customarily through the well-known slope method. The logarithmic operation over the range-corrected and system-normalized received signal used in this method introduces a bias in the statistics of the noise-affected processed signal that can severely distort the estimates of the atmospheric attenuation and backscatter coefficients under measurement. It is shown that a fitting of the theoretically expected exponential signal to the range-corrected received one, using as the initial guess the results provided by the slope method and a least-squares iterative procedure, can yield enhanced accuracy under low signal-to-noise ratios and especially in moderate-to-high extinction conditions.

6.
Appl Opt ; 37(30): 7019-34, 1998 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-18301520

RESUMO

Joint estimation of extinction and backscatter simulated profiles from elastic-backscatter lidar return signals is tackled by means of an extended Kalman filter (EKF). First, we introduced the issue from a theoretical point of view by using both an EKF formulation and an appropriate atmospheric stochastic model; second, it is tested through extensive simulation and under simplified conditions; and, finally, a first real application is discussed. An atmospheric model including both temporal and spatial correlation features is introduced to describe approximate fluctuation statistics in the sought-after atmospheric optical parameters and hence to include a priori information in the algorithm. Provided that reasonable models are given for the filter, inversion errors are shown to depend strongly on the atmospheric condition (i.e., the visibility) and the signal-to-noise ratio along the exploration path in spite of modeling errors in the assumed statistical properties of the atmospheric optical parameters. This is of advantage in the performance of the Kalman filter because they are often the point of most concern in identification problems. In light of the adaptive behavior of the filter and the inversion results, the EKF approach promises a successful alternative to present-day nonmemory algorithms based on exponential-curve fitting or differential equation formulations such as Klett's method.

7.
Appl Opt ; 36(33): 8632-8, 1997 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18264414

RESUMO

To estimate the probability distributions of power fades, we consider two basic types of disturbance in electromagnetic wave propagation through atmospheric turbulence: wave-front intensity fluctuations and wave-front distortion. We assess the reduction in the cumulative probability of losses caused by these two effects through spatial diversity by using a multiaperture receiver configuration. Degradations in receiver performance are determined with fractal techniques used to simulate the turbulence-induced wave-front phase distortion, and a log normal model is assumed for the collected power fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...