Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Radiol Oncol ; 7(1): 20-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539093

RESUMO

The nanometer-scale spatial organization of immune receptors plays a role in cell activation and suppression. While the connection between this spatial organization and cell signaling events is emerging from cell culture experiments, how these results translate to more physiologically relevant settings like the tumor microenvironment remains poorly understood due to the challenges of high-resolution imaging in vivo. Here we perform super-resolution immunofluorescence microscopy of human melanoma tissue sections to examine the spatial organization of the immune checkpoint inhibitor programmed cell death 1 (PD-1). We show that PD-1 exhibits a variety of organizations ranging from nanometer-scale clusters to more uniform membrane labeling. Our results demonstrate the capability of super-resolution imaging to examine the spatial organization of immune checkpoint markers in the tumor microenvironment, suggesting a future direction for both clinical and immunology research.

2.
Methods Cell Biol ; 176: 59-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164543

RESUMO

The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.


Assuntos
Cílios , Doenças Renais Císticas , Humanos , Cílios/metabolismo , Imagem Individual de Molécula , Doenças Renais Císticas/metabolismo , Transdução de Sinais , Linhagem Celular
3.
Cell Syst ; 13(6): 488-498.e4, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512710

RESUMO

Biological systems ranging from bacteria to mammals utilize electrochemical signaling. Although artificial electrochemical signals have been utilized to characterize neural tissue responses, the effects of such stimuli on non-neural systems remain unclear. To pursue this question, we developed an experimental platform that combines a microfluidic chip with a multielectrode array (MiCMA) to enable localized electrochemical stimulation of bacterial biofilms. The device also allows for the simultaneous measurement of the physiological response within the biofilm with single-cell resolution. We find that the stimulation of an electrode locally changes the ratio of the two major cell types comprising Bacillus subtilis biofilms, namely motile and extracellular-matrix-producing cells. Specifically, stimulation promotes the proliferation of motile cells but not matrix cells, even though these two cell types are genetically identical and reside in the same microenvironment. Our work thus reveals that an electronic interface can selectively target bacterial cell types, enabling the control of biofilm composition and development.


Assuntos
Bacillus subtilis , Biofilmes , Bacillus subtilis/metabolismo , Proliferação de Células , Estimulação Elétrica , Matriz Extracelular/metabolismo
4.
Cell Syst ; 12(6): 497-508, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34139162

RESUMO

Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.


Assuntos
Metais , Neurônios , Bactérias , Homeostase , Íons
5.
Mol Cell ; 80(4): 699-711.e7, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33091336

RESUMO

CCCTC-binding factor (CTCF) and cohesin play critical roles in organizing mammalian genomes into topologically associating domains (TADs). Here, by combining genetic engineering with quantitative super-resolution stimulated emission depletion (STED) microscopy, we demonstrate that in living cells, CTCF forms clusters typically containing 2-8 molecules. A fraction of CTCF clusters, enriched for those with ≥3 molecules, are coupled with cohesin complexes with a characteristic physical distance suggestive of a defined molecular interaction. Acute degradation of the cohesin unloader WAPL or transcriptional inhibition (TI) result in increased CTCF clustering. Furthermore, the effect of TI on CTCF clusters is alleviated by the acute loss of the cohesin subunit SMC3. Our study provides quantitative characterization of CTCF clusters in living cells, uncovers the opposing effects of cohesin and transcription on CTCF clustering, and highlights the power of quantitative super-resolution microscopy as a tool to bridge the gap between biochemical and genomic methodologies in chromatin research.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/citologia , Microscopia de Fluorescência/métodos , Proteínas/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Mamíferos , Células-Tronco Embrionárias/metabolismo , Loci Gênicos , Genoma , Processamento de Imagem Assistida por Computador , Camundongos , Proteínas/genética , Coesinas
6.
Nat Commun ; 10(1): 2731, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227690

RESUMO

Many bacteria and most archaea possess a crystalline protein surface layer (S-layer), which surrounds their growing and topologically complicated outer surface. Constructing a macromolecular structure of this scale generally requires localized enzymatic machinery, but a regulatory framework for S-layer assembly has not been identified. By labeling, superresolution imaging, and tracking the S-layer protein (SLP) from C. crescentus, we show that 2D protein self-assembly is sufficient to build and maintain the S-layer in living cells by efficient protein crystal nucleation and growth. We propose a model supported by single-molecule tracking whereby randomly secreted SLP monomers diffuse on the lipopolysaccharide (LPS) outer membrane until incorporated at the edges of growing 2D S-layer crystals. Surface topology creates crystal defects and boundaries, thereby guiding S-layer assembly. Unsupervised assembly poses challenges for therapeutics targeting S-layers. However, protein crystallization as an evolutionary driver rationalizes S-layer diversity and raises the potential for biologically inspired self-assembling macromolecular nanomaterials.


Assuntos
Proteínas de Bactérias/química , Parede Celular/química , Glicoproteínas de Membrana/química , Caulobacter crescentus/química , Cristalização , Lipopolissacarídeos/química , Substâncias Macromoleculares/química , Nanoestruturas/química , Nanotecnologia/métodos
7.
Biophys J ; 116(2): 319-329, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30598282

RESUMO

Super-resolution (SR) microscopy has been used to observe structural details beyond the diffraction limit of ∼250 nm in a variety of biological and materials systems. By combining this imaging technique with both computer-vision algorithms and topological methods, we reveal and quantify the nanoscale morphology of the primary cilium, a tiny tubular cellular structure (∼2-6 µm long and 200-300 nm in diameter). The cilium in mammalian cells protrudes out of the plasma membrane and is important in many signaling processes related to cellular differentiation and disease. After tagging individual ciliary transmembrane proteins, specifically Smoothened, with single fluorescent labels in fixed cells, we use three-dimensional (3D) single-molecule SR microscopy to determine their positions with a precision of 10-25 nm. We gain a dense, pointillistic reconstruction of the surfaces of many cilia, revealing large heterogeneity in membrane shape. A Poisson surface reconstruction algorithm generates a fine surface mesh, allowing us to characterize the presence of deformations by quantifying the surface curvature. Upon impairment of intracellular cargo transport machinery by genetic knockout or small-molecule treatment of cells, our quantitative curvature analysis shows significant morphological differences not visible by conventional fluorescence microscopy techniques. Furthermore, using a complementary SR technique, two-color, two-dimensional stimulated emission depletion microscopy, we find that the cytoskeleton in the cilium, the axoneme, also exhibits abnormal morphology in the mutant cells, similar to our 3D results on the Smoothened-measured ciliary surface. Our work combines 3D SR microscopy and computational tools to quantitatively characterize morphological changes of the primary cilium under different treatments and uses stimulated emission depletion to discover correlated changes in the underlying structure. This approach can be useful for studying other biological or nanoscale structures of interest.


Assuntos
Cílios/ultraestrutura , Imagem Individual de Molécula/métodos , Animais , Axonema/ultraestrutura , Membrana Celular/ultraestrutura , Células Cultivadas , Corantes Fluorescentes/química , Proteínas de Membrana/química , Camundongos , Microscopia de Fluorescência/métodos
8.
Curr Protoc Cell Biol ; 75: 4.32.1-4.32.22, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627757

RESUMO

Visualization of dynamic protein structures in live cells is crucial for understanding the mechanisms governing biological processes. Fluorescence microscopy is a sensitive tool for this purpose. In order to image proteins in live bacteria using fluorescence microscopy, one typically genetically fuses the protein of interest to a photostable fluorescent tag. Several labeling schemes are available to accomplish this. Particularly, hybrid tags that combine a fluorescent or fluorogenic dye with a genetically encoded protein (such as enzymatic labels) have been used successfully in multiple cell types. However, their use in bacteria has been limited due to challenges imposed by a complex bacterial cell wall. Here, we describe the use of a genetically encoded photostable fluoromodule that can be targeted to cytosolic and membrane proteins in the Gram negative bacterium Caulobacter crescentus. Additionally, we summarize methods to use this fluoromodule for single protein imaging and super-resolution microscopy using stimulated emission depletion. © 2017 by John Wiley & Sons, Inc.


Assuntos
Proteínas de Bactérias/análise , Caulobacter crescentus/citologia , Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , Microscopia de Fluorescência/métodos , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Caulobacter crescentus/ultraestrutura , Clonagem Molecular/métodos , Corantes Fluorescentes/metabolismo , Proteínas Luminescentes/genética , Imagem Óptica/métodos , Plasmídeos/genética , Transformação Genética
9.
J Am Chem Soc ; 138(33): 10398-401, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27479076

RESUMO

The rapid development in fluorescence microscopy and imaging techniques has greatly benefited our understanding of the mechanisms governing cellular processes at the molecular level. In particular, super-resolution microscopy methods overcome the diffraction limit to observe nanoscale cellular structures with unprecedented detail, and single-molecule tracking provides precise dynamic information about the motions of labeled proteins and oligonucleotides. Enhanced photostability of fluorescent labels (i.e., maximum emitted photons before photobleaching) is a critical requirement for achieving the ultimate spatio-temporal resolution with either method. While super-resolution imaging has greatly benefited from highly photostable fluorophores, a shortage of photostable fluorescent labels for bacteria has limited its use in these small but relevant organisms. In this study, we report the use of a highly photostable fluoromodule, dL5, to genetically label proteins in the Gram-negative bacterium Caulobacter crescentus, enabling long-time-scale protein tracking and super-resolution microscopy. dL5 imaging relies on the activation of the fluorogen Malachite Green (MG) and can be used to label proteins sparsely, enabling single-protein detection in live bacteria without initial bleaching steps. dL5-MG complexes emit 2-fold more photons before photobleaching compared to organic dyes such as Cy5 and Alexa 647 in vitro, and 5-fold more photons compared to eYFP in vivo. We imaged fusions of dL5 to three different proteins in live Caulobacter cells using stimulated emission depletion microscopy, yielding a 4-fold resolution enhancement compared to diffraction-limited imaging. Importantly, dL5 fusions to an intermediate filament protein CreS are significantly less perturbative compared to traditional fluorescent protein fusions. To the best of our knowledge, this is the first demonstration of the use of fluorogen activating proteins for super-resolution imaging in live bacterial cells.


Assuntos
Corantes Fluorescentes/metabolismo , Luz , Microscopia de Fluorescência/métodos , Caulobacter crescentus/citologia , Sobrevivência Celular , Fótons
10.
Mol Biol Cell ; 25(19): 2919-33, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25103236

RESUMO

Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Cby1, the mammalian orthologue of the Drosophila Chibby protein, localizes to mature centrioles, is important for ciliogenesis in multiciliated airway epithelia in mice, and antagonizes canonical Wnt signaling via direct regulation of ß-catenin. We report that deletion of the mouse Cby1 gene results in cystic kidneys, a phenotype common to ciliopathies, and that Cby1 facilitates the formation of primary cilia and ciliary recruitment of the Joubert syndrome protein Arl13b. Localization of Cby1 to the distal end of mature centrioles depends on the centriole protein Ofd1. Superresolution microscopy using both three-dimensional SIM and STED reveals that Cby1 localizes to an ∼250-nm ring at the distal end of the mature centriole, in close proximity to Ofd1 and Ahi1, a component of the transition zone between centriole and cilium. The amount of centriole-localized Ahi1, but not Ofd1, is reduced in Cby1(-/-) cells. This suggests that Cby1 is required for efficient recruitment of Ahi1, providing a possible molecular mechanism for the ciliogenesis defect in Cby1(-/-) cells.


Assuntos
Proteínas de Transporte/genética , Centríolos/metabolismo , Cílios/genética , Doenças Renais Císticas/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Cílios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Via de Sinalização Wnt , beta Catenina
11.
PLoS One ; 7(10): e47664, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112830

RESUMO

Membrane nanotubes are thin membranous projections that physically connect two cells. While nanotubes have been studied in human natural killer (NK) cells and are implicated in aiding NK cell cytotoxic function, requirements for their formation to susceptible target cells remain incompletely understood. Here we demonstrate that the CD2-CD58/48 receptor-ligand interaction promotes and is required for nanotube formation in human NK cells. In the CD2(-) NK cell line YTS, a stable CD2 expression variant enabled effective nanotube formation, and was associated with better cytotoxic function. Importantly, only interactions between an NK cell and a susceptible target cell were associated with multiple nanotubes and the number of nanotubes was inversely correlated with their length. Quantitative live cell fluorescence microscopy of CD2 nanotubes revealed time-dependent enrichment and localization of CD2 to the nanotube tip, and blocking CD2 receptor-ligand interactions prevented nanotube formation. Increased nanotube formation was not simply a feature of receptor-ligand pairing, as a KIR-MHC interaction in the same cell line system failed to promote nanotube formation. Additionally, blocking LFA-1-ICAM and 2B4-CD48 receptor-ligand interactions failed to inhibit nanotube formation. Thus only specific receptor-ligand pairs promote nanotubes. CD2 also promoted nanotube formation in ex vivo NK cells suggesting that CD2 plays a crucial role in the generation of nanotubes between an NK cell and its target.


Assuntos
Antígenos CD2/imunologia , Antígenos CD58/imunologia , Membrana Celular/imunologia , Membrana Celular/ultraestrutura , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/ultraestrutura , Antígenos CD2/análise , Antígenos CD58/análise , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...