Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Immunol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714818

RESUMO

Leukocyte migration is a fundamental component of innate and adaptive immune responses as it governs the recruitment and localization of these motile cells, which is crucial for immune cell priming, effector functions, memory responses and immune regulation. This complex cellular trafficking system is controlled to a large extent via highly regulated production of secreted chemokines and the restricted expression of their membrane-tethered G-protein-coupled receptors. The activity of chemokines and their receptors is also regulated by a subfamily of molecules known as atypical chemokine receptors (ACKRs), which are chemokine receptor-like molecules that do not couple to the classical signalling pathways that promote cell migration in response to chemokine ligation. There has been a great deal of progress in understanding the biology of these receptors and their functions in the immune system in the past decade. Here, we describe the contribution of the various ACKRs to innate and adaptive immune responses, focussing specifically on recent progress. This includes recent findings that have defined the role for ACKRs in sculpting extracellular chemokine gradients, findings that broaden the spectrum of chemokine ligands recognized by these receptors, candidate new additions to ACKR family, and our increasing understanding of the role of these receptors in shaping the migration of innate and adaptive immune cells.

2.
Front Immunol ; 15: 1327051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807599

RESUMO

Introduction: The CC chemokine ligand 18 (CCL18) is a chemokine highly expressed in chronic inflammation in humans. Recent observations of elevated CCL18 plasma levels in patients with acute cardiovascular syndromes prompted an investigation into the role of CCL18 in the pathogenesis of human and mouse atherosclerosis. Methods and results: CCL18 was profoundly upregulated in ruptured human atherosclerotic plaque, particularly within macrophages. Repeated administration of CCL18 in Western-type diet-fed ApoE -/- mice or PCSK9mut-overexpressing wild type (WT) mice led to increased plaque burden, enriched in CD3+ T cells. In subsequent experimental and molecular modeling studies, we identified CCR6 as a functional receptor mediating CCL18 chemotaxis, intracellular Ca2+ flux, and downstream signaling in human Jurkat and mouse T cells. CCL18 failed to induce these effects in vitro in murine spleen T cells with CCR6 deficiency. The ability of CCR6 to act as CCL18 receptor was confirmed in vivo in an inflammation model, where subcutaneous CCL18 injection induced profound focal skin inflammation in WT but not in CCR6-/- mice. This inflammation featured edema and marked infiltration of various leukocyte subsets, including T cells with a Th17 signature, supporting CCR6's role as a Th17 chemotactic receptor. Notably, focal overexpression of CCL18 in plaques was associated with an increased presence of CCR6+ (T) cells. Discussion: Our studies are the first to identify the CCL18/CCR6 axis as a regulator of immune responses in advanced murine and human atherosclerosis.


Assuntos
Aterosclerose , Quimiocinas CC , Receptores CCR6 , Animais , Humanos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Camundongos , Receptores CCR6/metabolismo , Receptores CCR6/genética , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Jurkat , Placa Aterosclerótica/imunologia , Camundongos Knockout , Masculino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Feminino , Camundongos Knockout para ApoE
3.
Nat Commun ; 14(1): 5546, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684239

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Imunoterapia , Encéfalo , Mama , Membrana Celular , Modelos Animais de Doenças
4.
Mucosal Immunol ; 16(5): 606-623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37321403

RESUMO

Type I regulatory (Tr1) cells are defined as FOXP3-IL-10-secreting clusters of differentiation (CD4+) T cells that contribute to immune suppression and typically express the markers LAG-3 and CD49b and other co-inhibitory receptors. These cells have not been studied in detail in the context of the resolution of acute infection in the lung. Here, we identify FOXP3- interleukin (IL)-10+ CD4+ T cells transiently accumulating in the lung parenchyma during resolution of the response to sublethal influenza A virus (IAV) infection in mice. These cells were dependent on IL-27Rα, which was required for timely recovery from IAV-induced weight loss. LAG-3 and CD49b were not generally co-expressed by FOXP3- IL-10+ CD4+ T cells in this model and four populations of these cells based on LAG-3 and CD49b co-expression were apparent [LAG-3-CD49b- (double negative), LAG-3+CD49b+ (double positive), LAG-3+CD49b- (LAG-3+), LAG-3-CD49b+ (CD49b+)]. However, each population exhibited suppressive potential consistent with the definition of Tr1 cells. Notably, differences between these populations of Tr1 cells were apparent including differential dependence on IL-10 to mediate suppression and expression of markers indicative of different activation states and terminal differentiation. Sort-transfer experiments indicated that LAG-3+ Tr1 cells exhibited the capacity to convert to double negative and double positive Tr1 cells, indicative of plasticity between these populations. Together, these data determine the features and suppressive potential of Tr1 cells in the resolution of IAV infection and identify four populations delineated by LAG-3 and CD49b, which likely correspond to different Tr1 cell activation states.

5.
Front Immunol ; 13: 873586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812408

RESUMO

Follicular T cells including T follicular helper (TFH) and T follicular regulatory (TFR) cells are essential in supporting and regulating the quality of antibody responses that develop in the germinal centre (GC). Follicular T cell migration during the propagation of antibody responses is largely attributed to the chemokine receptor CXCR5, however CXCR5 is reportedly redundant in migratory events prior to formation of the GC, and CXCR5-deficient TFH and TFR cells are still capable of localizing to GCs. Here we comprehensively assess chemokine receptor expression by follicular T cells during a model humoral immune response in the spleen. In addition to the known follicular T cell chemokine receptors Cxcr5 and Cxcr4, we show that follicular T cells express high levels of Ccr6, Ccr2 and Cxcr3 transcripts and we identify functional expression of CCR6 protein by both TFH and TFR cells. Notably, a greater proportion of TFR cells expressed CCR6 compared to TFH cells and gating on CCR6+CXCR5hiPD-1hi T cells strongly enriched for TFR cells. Examination of Ccr6-/- mice revealed that CCR6 is not essential for development of the GC response in the spleen, and mixed bone marrow chimera experiments found no evidence for an intrinsic requirement for CCR6 in TFR cell development or localisation during splenic humoral responses. These findings point towards multiple functionally redundant chemotactic signals regulating T cell localisation in the GC.


Assuntos
Imunidade Humoral , Animais , Centro Germinativo , Camundongos , Receptores CCR6/genética , Receptores CCR6/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Baço , Células T Auxiliares Foliculares , Linfócitos T Reguladores
6.
Cell Rep Med ; 3(3): 100543, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35492880

RESUMO

CAR-T cell therapy has been heralded as a breakthrough in the field of immunotherapy, but to date, this success has been limited to hematological malignancies. By harnessing the chemokine system and taking into consideration the chemokine expression profile in the tumor microenvironment, CAR-T cells may be homed into tumors to facilitate direct tumor cell cytolysis and overcome a major hurdle in generating effective CAR-T cell responses to solid cancers.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Quimiocinas , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral
7.
Front Immunol ; 13: 817473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250997

RESUMO

Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.


Assuntos
Doenças do Sistema Nervoso Central , Encefalomielite Autoimune Experimental , Animais , Linfócitos T CD4-Positivos , Doenças do Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Receptores de Quimiocinas/metabolismo , Células Th17
8.
Front Immunol ; 12: 626199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326833

RESUMO

Crosstalk between T and B cells is crucial for generating high-affinity, class-switched antibody responses. The roles of CD4+ T cells in this process have been well-characterised. In contrast, regulation of antibody responses by CD8+ T cells is significantly less defined. CD8+ T cells are principally recognised for eliciting cytotoxic responses in peripheral tissues and forming protective memory. However, recent findings have identified a novel population of effector CD8+ T cells that co-opt a differentiation program characteristic of CD4+ T follicular helper (Tfh) cells, upregulate the chemokine receptor CXCR5 and localise to B cell follicles. While it has been shown that CXCR5+CD8+ T cells mediate the removal of viral reservoirs in the context of follicular-trophic viral infections and maintain the response to chronic insults by virtue of progenitor/stem-like properties, it is not known if CXCR5+CD8+ T cells arise during acute peripheral challenges in the absence of follicular infection and whether they influence B cell responses in vivo in these settings. Using the ovalbumin-specific T cell receptor transgenic (OT-I) system in an adoptive transfer-immunisation/infection model, this study demonstrates that CXCR5+CD8+ T cells arise in response to protein immunisation and peripheral viral infection, displaying a follicular-homing phenotype, expression of cell surface molecules associated with Tfh cells and limited cytotoxic potential. Furthermore, studies assessing the B cell response in the presence of OT-I or Cxcr5-/- OT-I cells revealed that CXCR5+CD8+ T cells shape the antibody response to protein immunisation and peripheral viral infection, promoting class switching to IgG2c in responding B cells. Overall, the results highlight a novel contribution of CD8+ T cells to antibody responses, expanding the functionality of the adaptive immune system.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores CXCR5/metabolismo , Animais , Formação de Anticorpos , Humanos , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/imunologia , Receptores CXCR5/genética
9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875601

RESUMO

Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.


Assuntos
Movimento Celular , Quimiocina CCL21/metabolismo , Células Dendríticas/fisiologia , Linfonodos/metabolismo , Receptores CCR/metabolismo , Animais , Camundongos Endogâmicos C57BL
10.
Commun Biol ; 3(1): 293, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504007

RESUMO

Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors. The data predict a crucial role for differential neutrophil recruitment (confirmed by in vivo neutrophil depletion and IL-17 neutralization) indicating that early detection of bacteria by the host in the lung environment is crucial for effective clearance. Thus, dual RNA-seq provides a powerful tool for understanding complex host-pathogen interactions and reveals how a single bacterial SNP can drive differential disease outcomes.


Assuntos
Interação Gene-Ambiente , Interações Hospedeiro-Patógeno/genética , Infiltração de Neutrófilos , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Transcriptoma , Tropismo , Animais , Metabolismo dos Carboidratos , Feminino , Regulação da Expressão Gênica , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Infecções Pneumocócicas/microbiologia , RNA-Seq , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/patogenicidade , Virulência
11.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289156

RESUMO

Current immunotherapies involving CD8+ T cell responses show remarkable promise, but their efficacy in many solid tumors is limited, in part due to the low frequency of tumor-specific T cells in the tumor microenvironment (TME). Here, we identified a role for host atypical chemokine receptor 4 (ACKR4) in controlling intratumor T cell accumulation and activation. In the absence of ACKR4, an increase in intratumor CD8+ T cells inhibited tumor growth, and nonhematopoietic ACKR4 expression was critical. We show that ACKR4 inhibited CD103+ dendritic cell retention in tumors through regulation of the intratumor abundance of CCL21. In addition, preclinical studies indicate that ACKR4 and CCL21 are potential therapeutic targets to enhance responsiveness to immune checkpoint blockade or T cell costimulation.


Assuntos
Quimiocina CCL21/metabolismo , Imunidade , Neoplasias/imunologia , Receptores CCR/metabolismo , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Cadeias alfa de Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/genética , Células Estromais/metabolismo , Análise de Sobrevida
12.
Sci Rep ; 9(1): 12994, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506448

RESUMO

With recent approvals of antisense oligonucleotides as therapeutics, there is an increasing interest in expanding the application of these compounds to many other diseases. Our laboratory focuses on developing therapeutic splice modulating antisense oligonucleotides to treat diseases potentially amendable to intervention during pre-mRNA processing, and here we report the use of oligomers to down-regulate integrin alpha 4 protein levels. Over one hundred antisense oligonucleotides were designed to induce skipping of individual exons of the ITGA4 transcript and thereby reducing protein expression. Integrin alpha 4-mediated activities were evaluated in human dermal fibroblasts and Jurkat cells, an immortalised human T lymphocyte cell line. Peptide conjugated phosphorodiamidate morpholino antisense oligomers targeting ITGA4 were also assessed for their effect in delaying disease progression in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. With the promising results in ameliorating disease progression, we are optimistic that the candidate oligomer may also be applicable to many other diseases associated with integrin alpha 4 mediated inflammation. This highly specific strategy to down-regulate protein expression through interfering with normal exon selection during pre-mRNA processing should be applicable to many other gene targets that undergo splicing during expression.


Assuntos
Derme/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/terapia , Terapia Genética , Integrinas/antagonistas & inibidores , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/efeitos dos fármacos , Animais , Adesão Celular , Movimento Celular , Derme/metabolismo , Derme/patologia , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Integrinas/genética , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/genética , Splicing de RNA/genética
13.
PLoS Pathog ; 15(8): e1007957, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437249

RESUMO

Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences.


Assuntos
Suplementos Nutricionais , Modelos Animais de Doenças , Pneumopatias/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Virulência/efeitos dos fármacos , Zinco/administração & dosagem , Animais , Feminino , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Camundongos , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento
14.
Nat Microbiol ; 4(8): 1316-1327, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31110357

RESUMO

The upper respiratory tract is continuously exposed to a vast array of potentially pathogenic viruses and bacteria. Influenza A virus (IAV) has particular synergism with the commensal bacterium Streptococcus pneumoniae in this niche, and co-infection exacerbates pathogenicity and causes significant mortality. However, it is not known whether this synergism is associated with a direct interaction between the two pathogens. We have previously reported that co-administration of a whole-inactivated IAV vaccine (γ-Flu) with a whole-inactivated pneumococcal vaccine (γ-PN) enhances pneumococcal-specific responses. In this study, we show that mucosal co-administration of γ-Flu and γ-PN similarly augments IAV-specific immunity, particularly tissue-resident memory cell responses in the lung. In addition, our in vitro analysis revealed that S. pneumoniae directly interacts with both γ-Flu and with live IAV, facilitating increased uptake by macrophages as well as increased infection of epithelial cells by IAV. These observations provide an additional explanation for the synergistic pathogenicity of IAV and S. pneumoniae, as well as heralding the prospect of exploiting the phenomenon to develop better vaccine strategies for both pathogens.


Assuntos
Imunidade , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinas Pneumocócicas/imunologia , Animais , Coinfecção/imunologia , Coinfecção/prevenção & controle , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Células Epiteliais , Feminino , Humanos , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/administração & dosagem , Pulmão/imunologia , Macrófagos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/patogenicidade , Linfócitos T/imunologia
15.
Front Immunol ; 9: 796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731754

RESUMO

Preprogrammed IL-17-producing γδ T cells constitute a poorly understood class of lymphocytes that express rearranged antigen receptors but appear to make little use of them. γδT17 cells were first characterized as tissue-resident sentinels with innate effector function. However, ongoing research continues to reveal unexpected complexity to this unusual subset, including phenotypic plasticity, memory-like activity and unique migratory behavior. Despite these advances, at the core of γδT17 cell biology remain fundamental gaps in knowledge: Are γδT17 cells truly innate or has the importance of the T cell receptor been overlooked? How unique are they among IL-17-producing lymphocytes? How similar are these cells between mice and humans? We speculate that answering these unresolved questions is key to successful manipulation of γδ T cells in clinical settings.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia , Animais , Humanos , Interleucina-17/imunologia , Camundongos
16.
J Exp Med ; 215(3): 801-813, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29386231

RESUMO

Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem da Célula , Receptores CCR/metabolismo , Animais , Antígenos/metabolismo , Proliferação de Células , Centro Germinativo/metabolismo , Camundongos Endogâmicos C57BL , Baço/citologia
17.
Immunol Cell Biol ; 96(4): 347-357, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377354

RESUMO

Mesenchymal stromal cells or stem cells (MSCs) have been shown to participate in tissue repair and are immunomodulatory in neuropathological settings. Given this, their potential use in developing a new generation of personalized therapies for autoimmune and inflammatory diseases of the central nervous system (CNS) will be explored. To effectively exert these effector functions, MSCs must first gain entry into damaged neural tissues, a process that has been demonstrated to be a limiting factor in their therapeutic efficacy. In this review, we discuss approaches to maximize the therapeutic efficacy of MSCs by altering their intrinsic trafficking programs to effectively enter neuropathological sites. To this end, we explore the significant role of chemokine receptors and adhesion molecules in directing cellular traffic to the inflamed CNS and the capacity of MSCs to adopt these molecular mechanisms to gain entry to this site. We postulate that understanding and exploiting these migratory mechanisms may be key to the development of cell-based therapies tailored to respond to the migratory cues unique to the nature and stage of progression of individual CNS disorders.


Assuntos
Células-Tronco Adultas/transplante , Autoimunidade , Encéfalo/patologia , Inflamação/imunologia , Inflamação/terapia , Células-Tronco Mesenquimais/citologia , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
18.
Adv Immunol ; 135: 119-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28826528

RESUMO

CD4+ T cells are critical regulators of the adaptive immune system and have diverse roles in regulating responses to the broad array of microbes encountered. Appropriate execution of their effector function requires precise and coordinated migration of these cells to specific lymphoid niches and peripheral sites. This migration is largely controlled by dynamic expression of chemokine receptors and the discrete functions of distinct subsets of CD4+ T cells can often be determined from their expression of specific chemokine receptors. In this chapter, we discuss recent advances in the subset-specific homing of distinct T helper populations, focusing on new insights stemming from the increased diversity and plasticity now observed among CD4+ T cells as well as how chemokine receptors can govern T cell-fate decisions. We also discuss current understanding of CD4+ memory T cells with reference to their diversification based on chemokine receptor expression.


Assuntos
Infecções Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Quimiocinas/imunologia , Receptores de Quimiocinas/imunologia , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Linfócitos T CD4-Positivos/microbiologia , Quimiocinas/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Ativação Linfocitária , Receptores de Quimiocinas/genética , Transdução de Sinais , Subpopulações de Linfócitos T/microbiologia
19.
Sci Immunol ; 2(10)2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28738016

RESUMO

Type 1 regulatory T (TR1) cells are Foxp3- interleukin-10 (IL-10)-producing CD4+ T cells with potent immunosuppressive properties, but their requirements for lineage development have remained elusive. We show that TR1 cells constitute the most abundant regulatory population after allogeneic bone marrow transplantation (BMT), express the transcription factor Eomesodermin (Eomes), and are critical for the prevention of graft-versus-host disease. We demonstrate that Eomes is required for TR1 cell differentiation, during which it acts in concert with the transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) by transcriptionally activating IL-10 expression and repressing differentiation into other T helper cell lineages. We further show that Eomes induction in TR1 cells requires T-bet and donor macrophage-derived IL-27. Thus, we define the cellular and transcriptional control of TR1 cell differentiation during BMT, opening new avenues to therapeutic manipulation.

20.
Nat Commun ; 8: 15632, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580944

RESUMO

Interleukin 17-producing γδ T (γδT17) cells have unconventional trafficking characteristics, residing in mucocutaneous tissues but also homing into inflamed tissues via circulation. Despite being fundamental to γδT17-driven early protective immunity and exacerbation of autoimmunity and cancer, migratory cues controlling γδT17 cell positioning in barrier tissues and recruitment to inflammatory sites are still unclear. Here we show that γδT17 cells constitutively express chemokine receptors CCR6 and CCR2. While CCR6 recruits resting γδT17 cells to the dermis, CCR2 drives rapid γδT17 cell recruitment to inflamed tissues during autoimmunity, cancer and infection. Downregulation of CCR6 by IRF4 and BATF upon γδT17 activation is required for optimal recruitment of γδT17 cells to inflamed tissue by preventing their sequestration into uninflamed dermis. These findings establish a lymphocyte trafficking model whereby a hierarchy of homing signals is prioritized by dynamic receptor expression to drive both tissue surveillance and rapid recruitment of γδT17 cells to inflammatory lesions.


Assuntos
Movimento Celular , Interleucina-17/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores CCR2/metabolismo , Receptores CCR6/metabolismo , Subpopulações de Linfócitos T/citologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Quimiocinas/metabolismo , Quimiotaxia , Regulação para Baixo , Feminino , Homeostase , Inflamação , Fatores Reguladores de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...