Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 126(9): 587-608, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008051

RESUMO

Lichens are well-known examples of complex symbiotic associations between organisms from different Kingdoms. Microfungi in particular, establish diverse associations with the hosting lichen thallus, as species-specific parasites or transient co-inhabitants. The whole community of lichen-associated fungi constitute the 'lichen mycobiome' comprising both ascomycetes and basidiomycetes, including filamentous and yeast taxa. Metabarcoding results and microscopy analyses show that in some thalli, basidiomycetes are frequent lichen-associated fungi but still only a few species could be axenically isolated and morphologically characterized. Within a broad project aiming at characterizing the mycobiome diversity by culture-dependent and independent approaches in two lichen species selected as reference models - Rhizoplaca melanophthalma and Tephromela atra, we succeed in isolating and culturing 76 new strains of basidiomycetous yeasts. The lichen thalli were collected in different mountain regions worldwide and at relatively high elevation. The yeast strains were isolated on different growth media and were studied for their morphological and genetic diversity. Nuclear internal transcribed spacer (ITS) and ribosomal large subunit (LSU) sequence analyses identified them to belong to ten families within the orders Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes, Tremellomycetes and Ustilaginomycetes. The yeasts here detected showed patterns of host-preference in a few cases and they are potentially related to the ecological conditions.


Assuntos
Ascomicetos , Basidiomycota , Líquens , Ascomicetos/genética , Basidiomycota/genética , Humanos , Líquens/microbiologia , Filogenia , Simbiose
2.
Front Microbiol ; 13: 809804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422771

RESUMO

Fungal-algal relationships-both across evolutionary and ecological scales-are finely modulated by the presence of the symbionts in the environments and by the degree of selectivity and specificity that either symbiont develop reciprocally. In lichens, the green algal genus Trebouxia Puymaly is one of the most frequently recovered chlorobionts. Trebouxia species-level lineages have been recognized on the basis of their morphological and phylogenetic diversity, while their ecological preferences and distribution are still only partially unknown. We selected two cosmopolitan species complexes of lichen-forming fungi as reference models, i.e., Rhizoplaca melanophthalma and Tephromela atra, to investigate the diversity of their associated Trebouxia spp. in montane habitats across their distributional range worldwide. The greatest diversity of Trebouxia species-level lineages was recovered in the altitudinal range 1,000-2,500 m a.s.l. A total of 10 distinct Trebouxia species-level lineages were found to associate with either mycobiont, for which new photobionts are reported. One previously unrecognized Trebouxia species-level lineage was identified and is here provisionally named Trebouxia "A52." Analyses of cell morphology and ultrastructure were performed on axenically isolated strains to fully characterize the new Trebouxia "A52" and three other previously recognized lineages, i.e., Trebouxia "A02," T. vagua "A04," and T. vagua "A10," which were successfully isolated in culture during this study. The species-level diversity of Trebouxia associating with the two lichen-forming fungi in extreme habitats helps elucidate the evolutionary pathways that this lichen photobiont genus traversed to occupy varied climatic and vegetative regimes.

3.
J Fungi (Basel) ; 7(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34829222

RESUMO

Microbial endolithic communities are the main and most widespread life forms in the coldest and hyper-arid desert of the McMurdo Dry Valleys and other ice-free areas across Victoria Land, Antarctica. There, the lichen-dominated communities are complex and self-supporting assemblages of phototrophic and heterotrophic microorganisms, including bacteria, chlorophytes, and both free-living and lichen-forming fungi living at the edge of their physiological adaptability. In particular, among the free-living fungi, microcolonial, melanized, and anamorphic species are highly recurrent, while a few species were sometimes found to be associated with algae. One of these fungi is of paramount importance for its peculiar traits, i.e., a yeast-like habitus, co-growing with algae and being difficult to propagate in pure culture. In the present study, this taxon is herein described as the new genus Antarctolichenia and its type species is A. onofrii, which represents a transitional group between the free-living and symbiotic lifestyle in Arthoniomycetes. The phylogenetic placement of Antarctolichenia was studied using three rDNA molecular markers and morphological characters were described. In this study, we also reappraise the evolution and the connections linking the lichen-forming and rock-inhabiting lifestyles in the basal lineages of Arthoniomycetes (i.e., Lichenostigmatales) and Dothideomycetes.

4.
Int J Food Microbiol ; 328: 108687, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32474227

RESUMO

Penicilium griseofulvum, the causal agent of apple blue mold, is able to produce in vitro and on apple a broad spectrum of secondary metabolites (SM), including patulin, roquefortine C and griseofulvin. Among them, griseofulvin is known for its antifungal and antiproliferative activity, and has received interest in many sectors, from medicine to agriculture. The biosynthesis of SM is finely regulated by filamentous fungi and can involve global regulators and pathway specific regulators, which are usually encoded by genes present in the same gene cluster as the backbone gene and tailoring enzymes. In the griseofulvin gene cluster, two putative transcription factors were previously identified, encoded by genes gsfR1 and gsfR2, and their role has been investigated in the present work. Analysis of P. griseofulvum knockout mutants lacking either gene suggest that gsfR2 forms part of a different pathway and gsfR1 exhibits many spectra of action, acting as regulator of griseofulvin and patulin biosynthesis and influencing conidia production and virulence on apple. The analysis of gsfR1 promoter revealed that the regulation of griseofulvin biosynthesis is also controlled by global regulators in response to many environmental stimuli, such as carbon and nitrogen. The influence of carbon and nitrogen on griseofulvin production was further investigated and verified, revealing a complex network of response and confirming the central role of gsfR1 in many processes in P. griseofulvum.


Assuntos
Griseofulvina/biossíntese , Patulina/biossíntese , Penicillium/metabolismo , Penicillium/patogenicidade , Esporos Fúngicos/crescimento & desenvolvimento , Carbono/metabolismo , Microbiologia de Alimentos , Griseofulvina/metabolismo , Malus/microbiologia , Família Multigênica , Nitrogênio/metabolismo , Patulina/metabolismo , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...