Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 21(6): 1147-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904135

RESUMO

CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5' ends (8-nt repeat-derived 5' tag sequences) but heterogeneous 3' ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3' end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.


Assuntos
Sistemas CRISPR-Cas , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Arqueal/genética , Ribonucleoproteínas/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas Associadas a CRISPR/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , RNA Arqueal/metabolismo , Ribonucleoproteínas/metabolismo , Análise de Sequência de RNA
2.
Mol Cell ; 45(3): 292-302, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22227116

RESUMO

Small RNAs target invaders for silencing in the CRISPR-Cas pathways that protect bacteria and archaea from viruses and plasmids. The CRISPR RNAs (crRNAs) contain sequence elements acquired from invaders that guide CRISPR-associated (Cas) proteins back to the complementary invading DNA or RNA. Here, we have analyzed essential features of the crRNAs associated with the Cas RAMP module (Cmr) effector complex, which cleaves targeted RNAs. We show that Cmr crRNAs contain an 8 nucleotide 5' sequence tag (also found on crRNAs associated with other CRISPR-Cas pathways) that is critical for crRNA function and can be used to engineer crRNAs that direct cleavage of novel targets. We also present data that indicate that the Cmr complex cleaves an endogenous complementary RNA in Pyrococcus furiosus, providing direct in vivo evidence of RNA targeting by the CRISPR-Cas system. Our findings indicate that the CRISPR RNA-Cmr protein pathway may be exploited to cleave RNAs of interest.


Assuntos
Sequências Repetidas Invertidas , Pyrococcus furiosus/genética , Clivagem do RNA , RNA Arqueal/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Sequência de Bases , Engenharia Genética , Loci Gênicos , Imunoprecipitação , Substâncias Macromoleculares/isolamento & purificação , Dados de Sequência Molecular , Pyrococcus furiosus/metabolismo , RNA Antissenso , Análise de Sequência de RNA
3.
RNA ; 16(11): 2181-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20884784

RESUMO

The CRISPR-Cas system provides many prokaryotes with acquired resistance to viruses and other mobile genetic elements. The core components of this defense system are small, host-encoded prokaryotic silencing (psi)RNAs and Cas (CRISPR-associated) proteins. Invader-derived sequences within the psiRNAs guide Cas effector proteins to recognize and silence invader nucleic acids. Critical for CRISPR-Cas defense is processing of the psiRNAs from the primary transcripts of the host CRISPR (clustered regularly interspaced short palindromic repeat) locus. Cas6, a previously identified endoribonuclease present in a wide range of prokaryotes with the CRISPR-Cas system, binds and cleaves within the repeat sequences that separate the individual invader targeting elements in the CRISPR locus transcript. In the present study, we investigated several key aspects of the mechanism of function of Cas6 in psiRNA biogenesis. RNA footprinting reveals that Pyrococcus furiosus Cas6 binds to a 7-nt (nucleotide) sequence near the 5' end of the CRISPR RNA repeat sequence, 14 nt upstream of the Cas6 cleavage site. In addition, analysis of the cleavage activity of P. furiosus Cas6 proteins with mutations at conserved residues suggests that a triad comprised of Tyr31, His46, and Lys52 plays a critical role in catalysis, consistent with a possible general acid-base RNA cleavage mechanism for Cas6. Finally, we show that P. furiosus Cas6 remains stably associated with its cleavage products, suggesting additional roles for Cas6 in psiRNA biogenesis.


Assuntos
Endorribonucleases/metabolismo , Pyrococcus furiosus/enzimologia , RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Biocatálise , Endorribonucleases/genética , Inativação Gênica , Mutação , RNA/genética , Especificidade por Substrato
4.
Mol Biol Cell ; 18(5): 1609-20, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17314411

RESUMO

Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.


Assuntos
Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Quimiotaxia , Citocinese , Dictyostelium/citologia , Dictyostelium/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Complexos Multiproteicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
J Biol Chem ; 281(42): 32025-35, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16926153

RESUMO

Deletion of the yeast gene PKR1 (YMR123W) results in an inability to grow on iron-limited medium. Pkr1p is localized to the membrane of the endoplasmic reticulum. Cells lacking Pkr1p show reduced levels of the V-ATPase subunit Vph1p due to increased turnover of the protein in mutant cells. Reduced levels of the V-ATPase lead to defective copper loading of Fet3p, a component of the high affinity iron transport system. Levels of Vph1p in cells lacking Pkr1p are similar to cells unable to assemble a functional V-ATPase due to lack of a V0 subunit or an endoplasmic reticulum (ER) assembly factor. However, unlike yeast mutants lacking a V0 subunit or a V-ATPase assembly factor, low levels of Vph1p present in cells lacking Pkr1p are assembled into a V-ATPase complex, which exits the ER and is present on the vacuolar membrane. The V-ATPase assembled in the absence of Pkr1p is fully functional because the mutant cells are able to weakly acidify their vacuoles. Finally, overexpression of the V-ATPase assembly factor Vma21p suppresses the growth and acidification defects of pkr1Delta cells. Our data indicate that Pkr1p functions together with the other V-ATPase assembly factors in the ER to efficiently assemble the V-ATPase membrane sector.


Assuntos
Proteínas Fúngicas/química , Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Deleção de Genes , Membranas Intracelulares/metabolismo , Proteínas de Membrana/fisiologia , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo
6.
J Biol Chem ; 281(22): 15312-9, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16569636

RESUMO

The Saccharomyces cerevisiae vacuolar proton-translocating ATPase (V-ATPase) is composed of 14 subunits distributed between a peripheral V1 subcomplex and an integral membrane V0 subcomplex. Genome-wide screens have led to the identification of the newest yeast V-ATPase subunit, Vma9p. Vma9p (subunit e) is a small hydrophobic protein that is conserved from fungi to animals. We demonstrate that disruption of yeast VMA9 results in the failure of V1 and V0 V-ATPase subunits to assemble onto the vacuole and in decreased levels of the subunit a isoforms Vph1p and Stv1p. We also show that Vma9p is an integral membrane protein, synthesized and inserted into the endoplasmic reticulum (ER), which then localizes to the limiting membrane of the vacuole. All V0 subunits and V-ATPase assembly factors are required for Vma9p to efficiently exit the ER. In the ER, Vma9p and the V0 subunits interact with the V-ATPase assembly factor Vma21p. Interestingly, the association of Vma9p with the V0-Vma21p assembly complex is disrupted with the loss of any single V0 subunit. Similarly, Vma9p is required for V0 subunits Vph1p and Vma6p to associate with the V0-Vma21p complex. In contrast, the proteolipids associate with Vma21p even in the absence of Vma9p. These results demonstrate that Vma9p is an integral membrane subunit of the yeast V-ATPase V0 subcomplex and suggest a model for the arrangement of polypeptides within the V0 subcomplex.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Deleção de Genes , Genes Fúngicos , Membranas Intracelulares/enzimologia , Modelos Moleculares , Complexos Multiproteicos , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia
7.
Mol Biol Cell ; 16(2): 637-48, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15563613

RESUMO

The radial spoke is a stable structural complex in the 9 + 2 axoneme for the control of flagellar motility. However, the spokes in Chlamydomonas mutant pf24 are heterogeneous and unstable, whereas several spoke proteins are reduced differentially. To elucidate the defective mechanism, we clone RSP16, a prominent spoke protein diminished in pf24 axonemes. Unexpectedly, RSP16 is a novel HSP40 member of the DnaJ superfamily that assists chaperones in various protein-folding-related processes. Importantly, RSP16 is uniquely excluded from the 12S spoke precursor complex that is packaged in the cell body and transported toward the flagellar tip to be converted into mature 20S axonemal spokes. Rather, RSP16, transported separately, joins the precursor complex in flagella. Furthermore, RSP16 molecules in vitro and in flagella form homodimers, a characteristic required for the cochaperone activity of HSP40. We postulate that the spoke HSP40 operates as a cochaperone to assist chaperone machinery at the flagellar tip to actively convert the smaller spoke precursor and itself into the mature stable complex; failure of the interaction between the spoke HSP40 and its target polypeptide results in heterogeneous unstable radial spokes in pf24.


Assuntos
Chlamydomonas/química , Flagelos/química , Flagelos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Fracionamento Celular , Chlamydomonas/genética , Chlamydomonas/metabolismo , Cromatografia de Afinidade , Cromatografia Líquida , Mapeamento Cromossômico , Clonagem Molecular , Dimerização , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/química , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
8.
Electrophoresis ; 23(19): 3262-5, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12373751

RESUMO

Molecular weight marker proteins are routinely used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis to estimate the relative molecular mass of specific proteins within a sample. This report describes a simple procedure for the generation of multicolored molecular weight proteins using a variety of Remazol-reactive textile dyes. These multicolored proteins provide a set of unambiguous markers for gel electrophoresis. Furthermore, the colored markers can be used in conjunction with Western blotting techniques to provide a visual display of marker proteins on the transfer membrane.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Cor , Corantes/química , Peso Molecular , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...