Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Med Phys ; 37(4): 1507-17, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443471

RESUMO

PURPOSE: Numerous new drug candidates fail because of inadequate pharmacokinetics. Positron emission tomography (PET) enables the noninvasive characterization of the drug in humans and animals. The aim of the present work was the comparison of methods for the extraction of organ time activity curves from rodent PET images without requiring resort to anatomical information. METHODS: The rodent organs were segmented using the local means analysis method and the accuracy of the time activity curve (TAC) estimated using four methods was compared: The mean TAC (Mean), the TAC computed in a selection of organ voxels (ROIopt), and the TAC corrected for partial volume effect using the geometric transfer matrix (GTM) method. The accuracy of the TAC estimated using the three methods was compared on phantom simulations and on experimental data sets on mice injected with fluorothymidine. RESULTS: The segmentation quality measured on phantom simulation was 80% of overlap between segmented and gold standard organs. On the phantom simulations, the error on the TAC estimation on phantom simulations was lower for ROIopt (8%) than using the GTM (18%) and the Mean (27%) methods. Similar results were achieved on the experimental data sets: ROIopt (5.8%), GTM (9.7%), and Mean (12%). CONCLUSIONS: The new ROI optimization method was fast and precise for all homogeneous organs, while mean organ TAC computation led as expected to important errors. GTM improved the quantification accuracy but showed instabilities due to segmentation errors and to small organ sizes. Partial volume effect correction or limitation is thus possible for the extraction of precise organ TACs without requiring either manual delineation or an anatomical modality.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Trifluridina/farmacologia , Animais , Simulação por Computador , Diagnóstico por Imagem , Camundongos , Modelos Estatísticos , Distribuição Normal , Imagens de Fantasmas , Probabilidade , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Software , Distribuição Tecidual
2.
Phys Med Biol ; 49(19): 4543-61, 2004 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-15552416

RESUMO

Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.


Assuntos
Simulação por Computador , Software , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Método de Monte Carlo , Reprodutibilidade dos Testes , Termodinâmica
3.
IEEE Trans Med Imaging ; 23(4): 413-25, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15084067

RESUMO

We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Processamento de Sinais Assistido por Computador , Tomografia Computadorizada de Emissão/métodos , Simulação por Computador , Estudos de Viabilidade , Análise de Fourier , Câmaras gama , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão/instrumentação , Transdutores
4.
IEEE Trans Med Imaging ; 20(8): 804-14, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11513031

RESUMO

The combination of Fourier rebinning (FORE) and the ordered subsets expectation-maximization (OSEM), a fast statistical algorithm, appears as a promising alternative to the fully three-dimensional (3-D) iterative approach for clinical positron emission tomography (PET) data. In this paper, we evaluated the properties of FORE+OSEM and compared it with fully 3-D OSEM using both simulations and data acquired by commercial scanners. The aim is to determine to what extent the speed advantage of FORE+OSEM is paid for by a possible degradation of image quality in the case of noisy clinical PET data. A forward- and back-projection pair based on a line integral model was used in two-dimensional OSEM and 3-D OSEM (3D-OSEM) instead of a system matrix. Different variants of both approaches have been studied with simulations in terms of contrast-noise tradeoff. Two variants--FORE+OSEM with attenuation weighting (AW) [FORE+OSEM(AW)] and 3D-OSEM with attenuation-normalization weighting (ANSP) and a shifted-Poisson (SP) model [3D-OSEM(ANSP)]--were compared with measured phantom data and patient data. Based on the results from both simulations and measured data, we conclude that: 1) both attenuation (-normalization) weighting and the SP model improve the image quality but slow down the convergence and 2) despite its approximate nature, FORE+OSEM does not show apparent image degradation compared with 3D-OSEM for data with a noise level typical of a whole-body FDG scan.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Tomografia Computadorizada de Emissão , Algoritmos , Humanos , Imagens de Fantasmas
5.
IEEE Trans Med Imaging ; 19(5): 485-92, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-11021691

RESUMO

The calculation of the intrinsic efficiency of individual crystals is one of the steps needed to obtain accurate images of the radioisotope distribution in positron emission tomography (PET). These efficiencies can be computed by comparing the number of coincidence counts obtained when the crystals are equally illuminated by the same source. However, because the number of coincidence counts acquired for one crystal also depends on the efficiency of the other crystals in coincidence, most methods of crystal efficiency calculation need to assume that the influence of the other crystals is negligible. If there are large crystal efficiency variations, this approximation may lead to systematic errors. We have recently implemented an iterative method for a single ring of detectors that does not rely on this assumption. In this paper, we describe a fully three-dimensional (3-D) iterative method that better exploits the sensitivity of the tomograph and allows reduced acquisition times or the use of narrow energy windows. We compare the performance of the iterative method (single-ring and extended to fully 3-D) with noniterative techniques for different acquisition times of a uniform cylinder. Two different energy windows were used to assess the performance of each method with different levels of variations of crystal efficiency. The results showed that the iterative methods are more accurate when large efficiency variations exist and that only the fully 3-D methods provided good efficiency estimates with very low duration scans. We, thus, conclude that iterative fully 3-D methods provide the best estimations and can be used in a larger range of situations than can the other methods tested.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada de Emissão/métodos , Algoritmos , Artefatos , Interpretação Estatística de Dados , Modelos Teóricos , Tomografia Computadorizada de Emissão/instrumentação
6.
IEEE Trans Med Imaging ; 18(8): 657-64, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10534048

RESUMO

The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
7.
J Nucl Med ; 40(12): 2053-65, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10616886

RESUMO

UNLABELLED: Because of limitations of spatial resolution, quantitative PET measurements of cerebral blood flow, glucose metabolism and neuroreceptor binding are influenced by partial-volume averaging among neighboring tissues with differing tracer concentrations. METHODS: Two MR-based approaches to partial-volume correction of PET images were compared using simulations and a multicompartment phantom. The two-compartment method corrects PET data for the diluting effects of cerebrospinal fluid (CSF) spaces. The more complex three-compartment method also accounts for the effect of partial-volume averaging between gray and white matter. The effects of the most significant sources of error on MR-based partial-volume correction, including misregistration, resolution mismatch, segmentation errors and white matter heterogeneity, were evaluated. We also examined the relative usefulness of both approaches in PET studies of aging and neurodegenerative disease. RESULTS: Although the three-compartment method was highly accurate (with 100% gray matter recovery achieved in simulations), it was also more sensitive to all errors tested, particularly image segmentation and PET-MR registration. CONCLUSION: Based on these data, we conclude that the two-compartment approach is better suited for comparative PET studies, whereas the three-compartment algorithm is capable of greater accuracy for absolute quantitative measures.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão , Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/anatomia & histologia , Encéfalo/patologia , Humanos , Imagens de Fantasmas
8.
IEEE Trans Neural Netw ; 6(3): 783-9, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-18263366

RESUMO

Self-organization was observed using the algorithm of Kohonen with an original "distance" adapted to stimuli resulting from coincident detections of electron-positron annihilation photon pairs. This has led to a method for approximate reconstruction of two-dimensional positron emission tomography (2-D PET) images that is totally independent of the number of detectors. To obtain meaningful information about the distribution of the radioactive tracer, a toroidal architecture must be used for the network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...