Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(2): 677-707, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289081

RESUMO

KEY POINTS: Inputs impinging on layer 5 pyramidal neurons perform essential operations as these cells represent one of the most important output carriers of the cerebral cortex. However, the contribution of astrocytes, a type of glial cell, to these operations is poorly documented. Here we found that optogenetic activation of astrocytes in the vicinity of layer 5 in the mouse primary visual cortex induces spiking in local pyramidal neurons through Nav1.6 ion channels and prolongs the responses elicited in these neurons by stimulation of their distal inputs in cortical layer 1. This effect partially involved glutamatergic signalling but relied mostly on the astrocytic calcium-binding protein S100ß, which regulates the concentration of calcium in the extracellular space around neurons. These findings show that astrocytes contribute to the fundamental computational operations of the cortex by acting on the ionic environment of neurons. ABSTRACT: The most complex cerebral functions are performed by the cortex, whose most important output is carried out by its layer 5 pyramidal neurons. Their firing reflects integration of the sensory and contextual information that they receive. There is evidence that astrocytes influence cortical neuron firing through the release of gliotransmitters such as ATP, glutamate or GABA. These effects have been described at the network and at the synaptic levels, but it is still unclear how astrocytes influence neuron input-output transfer function at the cellular level. Here, we used optogenetic tools coupled with electrophysiological, imaging and anatomical approaches to test whether and how astrocytic activation affected processing of distal inputs to layer 5 pyramidal neurons (L5PNs). We show that optogenetic activation of astrocytes near L5PN cell body prolonged firing induced by distal inputs to L5PNs and potentiated their ability to trigger spikes. The observed astrocytic effects on L5PN firing involved glutamatergic transmission to some extent but relied mostly on release of S100ß, an astrocytic Ca2+ -binding protein that decreases extracellular Ca2+ once released. This astrocyte-evoked decrease in extracellular Ca2+ elicited firing mediated by activation of Nav1.6 channels. Our findings suggest that astrocytes contribute to the cortical fundamental computational operations by controlling the extracellular ionic environment.


Assuntos
Astrócitos , Córtex Visual , Animais , Camundongos , Neurônios , Células Piramidais , Subunidade beta da Proteína Ligante de Cálcio S100
2.
J Vis Exp ; (140)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30346397

RESUMO

It has become increasingly clear that astrocytes modulate neuronal function not only at the synaptic and single-cell levels, but also at the network level. Astrocytes are strongly connected to each other through gap junctions and coupling through these junctions is dynamic and highly regulated. An emerging concept is that astrocytic functions are specialized and adapted to the functions of the neuronal circuit with which they are associated. Therefore, methods to measure various parameters of astrocytic networks are needed to better describe the rules governing their communication and coupling and to further understand their functions. Here, using the image analysis software (e.g., ImageJFIJI), we describe a method to analyze confocal images of astrocytic networks revealed by dye-coupling. These methods allow for 1) an automated and unbiased detection of labeled cells, 2) calculation of the size of the network, 3) computation of the preferential orientation of dye spread within the network, and 4) repositioning of the network within the area of interest. This analysis can be used to characterize astrocytic networks of a particular area, compare networks of different areas associated to different functions, or compare networks obtained under different conditions that have different effects on coupling. These observations may lead to important functional considerations. For instance, we analyze the astrocytic networks of a trigeminal nucleus, where we have previously shown that astrocytic coupling is essential for the ability of neurons to switch their firing patterns from tonic to rhythmic bursting1. By measuring the size, confinement, and preferential orientation of astrocytic networks in this nucleus, we can build hypotheses about functional domains that they circumscribe. Several studies suggest that several other brain areas, including the barrel cortex, lateral superior olive, olfactory glomeruli, and sensory nuclei in the thalamus and visual cortex, to name a few, may benefit from a similar analysis.


Assuntos
Astrócitos/citologia , Astrócitos/fisiologia , Rede Nervosa/fisiologia , Animais , Corantes , Junções Comunicantes/fisiologia , Processamento de Imagem Assistida por Computador , Neurônios/fisiologia , Ratos Sprague-Dawley , Software , Núcleos do Trigêmeo/fisiologia
3.
Glia ; 66(2): 311-326, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29058348

RESUMO

Stimuli that induce rhythmic firing in trigeminal neurons also increase astrocytic coupling and reveal networks that define the boundaries of this particular population. Rhythmic firing depends on astrocytic coupling which in turn depends on S100ß. In many nervous functions that rely on the ability of neuronal networks to generate a rhythmic pattern of activity, coordination of firing is an essential feature. Astrocytes play an important role in some of these networks, but the contribution of astrocytic coupling remains poorly defined. Here we investigate the modulation and organization of astrocytic networks in the dorsal part of the trigeminal main sensory nucleus (NVsnpr), which forms part of the network generating chewing movements. Using whole-cell recordings and the dye coupling approach by filling a single astrocyte with biocytin to reveal astrocytic networks, we showed that coupling is limited under resting conditions, but increases importantly under conditions that induce rhythmic firing in NVsnpr neurons. These are: repetitive electrical stimulation of the sensory inputs to the nucleus, local application of NMDA and decrease of extracellular Ca2+ . We have previously shown that rhythmic firing induced in NVsnpr neurons by these stimuli depends on astrocytes and their Ca2+ -binding protein S100ß. Here we show that extracellular blockade of S100ß also prevents the increase in astrocytic coupling induced by local application of NMDA. Most of the networks were small and remained confined to the functionally distinct area of dorsal NVsnpr. Disrupting coupling by perfusion with the nonspecific gap junction blocker, carbenoxolone or with GAP26, a selective inhibitor of connexin 43, mostly expressed in astrocytes, abolished NMDA-induced rhythmic firing in NVsnpr neurons. These results suggest that astrocytic coupling is regulated by sensory inputs, necessary for neuronal bursting, and organized in a region specific manner.


Assuntos
Astrócitos/fisiologia , Rede Nervosa/fisiologia , Periodicidade , Núcleos do Trigêmeo/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , N-Metilaspartato/farmacologia , Rede Nervosa/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Núcleos do Trigêmeo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...