Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sensors (Basel) ; 20(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429158

RESUMO

Near-infrared diffuse optical tomography is a non-invasive photonics-based imaging technology suited to functional brain imaging applications. Recent developments have proved that it is possible to build a compact time-domain diffuse optical tomography system based on silicon photomultipliers (SiPM) detectors. The system presented in this paper was equipped with the same eight SiPM probe-hosted detectors, but was upgraded with six injection fibers to shine the sample at several points. Moreover, an automatic switch was included enabling a complete measurement to be performed in less than one second. Further, the system was provided with a dual-wavelength ( 670 n m and 820 n m ) light source to quantify the oxy- and deoxy-hemoglobin concentration evolution in the tissue. This novel system was challenged against a solid phantom experiment, and two in-vivo tests, namely arm occlusion and motor cortex brain activation. The results show that the tomographic system makes it possible to follow the evolution of brain activation over time with a 1 s -resolution.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Tomografia Óptica , Humanos , Imagens de Fantasmas , Análise Espectral
2.
IEEE Trans Image Process ; 29(1): 2176-2189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31603787

RESUMO

The Mumford-Shah model is a standard model in image segmentation, and due to its difficulty, many approximations have been proposed. The major interest of this functional is to enable joint image restoration and contour detection. In this work, we propose a general formulation of the discrete counterpart of the Mumford-Shah functional, adapted to nonsmooth penalizations, fitting the assumptions required by the Proximal Alternating Linearized Minimization (PALM), with convergence guarantees. A second contribution aims to relax some assumptions on the involved functionals and derive a novel Semi-Linearized Proximal Alternated Minimization (SL-PAM) algorithm, with proved convergence. We compare the performances of the algorithm with several nonsmooth penalizations, for Gaussian and Poisson denoising, image restoration and RGB-color denoising. We compare the results with state-of-the-art convex relaxations of the Mumford-Shah functional, and a discrete version of the Ambrosio-Tortorelli functional. We show that the SL-PAM algorithm is faster than the original PALM algorithm, and leads to competitive denoising, restoration and segmentation results.

3.
Inverse Probl ; 34(9): 095004, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30083025

RESUMO

In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and describe the forward model. We then propose the minimization of nonsmooth convex objective functions for the recovery of the unknown image. In this context, we investigate two data-fitting terms for Poisson-Gaussian noise and introduce a new patch-based regularization method. This approach is tested against other regularization approaches on a realistic benchmark. Finally, we perform some test experiments on images acquired on two different microscopes.

4.
IEEE Trans Image Process ; 23(12): 5233-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25330485

RESUMO

This paper provides an extension of the 1D Hilbert Huang transform for the analysis of images using recent optimization techniques. The proposed method consists of: 1) adaptively decomposing an image into oscillating parts called intrinsic mode functions (IMFs) using a mode decomposition procedure and 2) providing a local spectral analysis of the obtained IMFs in order to get the local amplitudes, frequencies, and orientations. For the decomposition step, we propose two robust 2D mode decompositions based on nonsmooth convex optimization: 1) a genuine 2D approach, which constrains the local extrema of the IMFs and 2) a pseudo-2D approach, which separately constrains the extrema of lines, columns, and diagonals. The spectral analysis step is an optimization strategy based on Prony annihilation property and applied on small square patches of the IMFs. The resulting 2D Prony­Huang transform is validated on simulated and real data.

5.
IEEE Trans Image Process ; 23(9): 4160-4174, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24988595

RESUMO

The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.

6.
IEEE Trans Image Process ; 20(8): 2200-10, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21324782

RESUMO

Digital color cameras acquire color images by means of a sensor on which a color filter array (CFA) is overlaid. The Bayer CFA dominates the consumer market, but there has recently been a renewed interest for the design of CFAs . However, robustness to noise is often neglected in the design, though it is crucial in practice. In this paper, we present a new 2 × 3-periodic CFA which provides, by construction, the optimal tradeoff between robustness to aliasing, chrominance noise and luminance noise. Moreover, a simple and efficient linear demosaicking algorithm is described, which fully exploits the spectral properties of the CFA. Practical experiments confirm the superiority of our design, both in noiseless and noisy scenarios.

7.
IEEE Trans Vis Comput Graph ; 16(6): 1495-504, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975191

RESUMO

We investigate the use of a Fourier-domain derivative error kernel to quantify the error incurred while estimating the gradient of a function from scalar point samples on a regular lattice. We use the error kernel to show that gradient reconstruction quality is significantly enhanced merely by shifting the reconstruction kernel to the centers of the principal lattice directions. Additionally, we exploit the algebraic similarities between the scalar and derivative error kernels to design asymptotically optimal gradient estimation filters that can be factored into an infinite impulse response interpolation prefilter and a finite impulse response directional derivative filter. This leads to a significant performance gain both in terms of accuracy and computational efficiency. The interpolation prefilter provides an accurate scalar approximation and can be re-used to cheaply compute directional derivatives on-the-fly without the need to store gradients. We demonstrate the impact of our filters in the context of volume rendering of scalar data sampled on the Cartesian and Body-Centered Cubic lattices. Our results rival those obtained from other competitive gradient estimation methods while incurring no additional computational or storage overhead.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Aneurisma/patologia , Animais , Carpas/anatomia & histologia , Simulação por Computador , Bases de Dados Factuais , Análise de Fourier , Humanos , Imageamento Tridimensional/estatística & dados numéricos , Modelos Anatômicos
8.
IEEE Trans Image Process ; 17(5): 679-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18390374

RESUMO

A new grid conversion method is proposed to resample between two 2-D periodic lattices with the same sampling density. The main feature of our approach is the symmetric reversibility, which means that when using the same algorithm for the converse operation, then the initial data is recovered exactly. To that purpose, we decompose the lattice conversion process into (at most) three successive shear operations. The translations along the shear directions are implemented by 1-D fractional delay operators, which revert to simple 1-D convolutions, with appropriate filters that yield the property of symmetric reversibility. We show that the method is fast and provides high-quality resampled images. Applications of our approach can be found in various settings, such as grid conversion between the hexagonal and the Cartesian lattice, or fast implementation of affine transformations such as rotations.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Gráficos por Computador , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
IEEE Trans Image Process ; 16(5): 1195-206, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17491452

RESUMO

The reconstruction of a continuous-domain representation from sampled data is an essential element of many image processing tasks, in particular, image resampling. Until today, most image data have been available on Cartesian lattices, despite the many theoretical advantages of hexagonal sampling. In this paper, we propose new reconstruction methods for hexagonally sampled data that use the intrinsically 2-D nature of the lattice, and that at the same time remain practical and efficient. To that aim, we deploy box-spline and hex-spline models, which are notably well adapted to hexagonal lattices. We also rely on the quasi-interpolation paradigm to design compelling prefilters; that is, the optimal filter for a prescribed design is found using recent results from approximation theory. The feasibility and efficiency of the proposed methods are illustrated and compared for a hexagonal to Cartesian grid conversion problem.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Análise Numérica Assistida por Computador , Processamento de Sinais Assistido por Computador , Gráficos por Computador , Simulação por Computador , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...