Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Res Q Exerc Sport ; : 1-11, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302246

RESUMO

Eccentric exercise has gained attention as a novel exercise modality that increases muscle performance at a lower metabolic demand. However, vascular responses to eccentric cycling (ECC) are unknown, thus gaining knowledge regarding endothelial shear stress (ESS) during ECC may be crucial for its application in patients. The purpose of this study was to explore ECC-induced blood flow patterns and ESS across three different intensities in ECC. Eighteen young, apparently healthy subjects were recruited for two laboratory visits. Maximum oxygen consumption, power output, and blood lactate (BLa) threshold were measured to determine workload intensities. Blood flow patterns in the brachial artery were measured via ultrasound imaging and Doppler on an eccentric ergometer during a 5 min workload steady exercise test at low (BLa of 0-2 mmol/L), moderate (BLa 2-4 mmol/L), and high intensity (BLa levels > 4 mmol/L). There was a significant increase in the antegrade ESS in an intensity-dependent manner (baseline: 44.2 ± 8.97; low: 55.6 ± 15.2; moderate: 56.0 ± 10.5; high: 70.7 ± 14.9, all dynes/cm2, all p values < 0.0002) with the exception between low and moderate and Re (AU) showed turbulent flow at all intensities. Regarding retrograde flow, ESS also increased in an intensity-dependent manner (baseline 9.72 ± 4.38; low: 12.5 ± 3.93; moderate: 15.8 ± 5.45; high: 15.7 ± 6.55, all dynes/cm2, all p values < 0.015) with the exception between high and moderate and Re (AU) showed laminar flow in all intensities. ECC produced exercise-induced blood flow patterns that are intensity-dependent. This suggests that ECC could be beneficial as a modulator of endothelial homeostasis.

2.
Curr Issues Mol Biol ; 46(9): 9895-9905, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39329941

RESUMO

The vascular endothelium is the first line of defense to prevent cardiovascular disease. Its optimal functioning and health are maintained by the interaction of the proteins-endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), and endothelin 1 (ET1)-and the genes that encode them-NOS3, SIRT1, and EDN1, respectively. Aerobic exercise improves endothelial function by allegedly increasing endothelial shear stress (ESS). However, there are no current data exploring the acute effects of specific exercise-induced ESS intensities on these regulatory proteins and genes that are associated with endothelial function. The purpose of this study was to assess the acute changes in endothelial proteins and gene expression after exposure to low-, moderate-, and high-intensity exercise-induced ESS. Human umbilical vein endothelial cells (HUVECs) were exposed to resting ESS (18 dynes/cm2, 60 pulses per minute (PPM)), low ESS (35 dynes/cm2, 100 PPM), moderate ESS (50 dynes/cm2, 120 PPM), and high ESS (70 dynes/cm2, 150 PPM). Protein and gene expression were quantified by fluorescent Western blot and RTqPCR, respectively. All exercise conditions showed an increase in eNOS and SIRT1 expression and a decrease in NOS3 and SIRT1 gene expression when compared to resting conditions. In addition, there was no expression of ET1 and an increase in EDN1 gene expression when compared to resting conditions. These results show that (1) exercise-induced ESS increases the expressions of vascular protective proteins and (2) there is an inverse relationship between the proteins and their encoding genes immediately after exercise-induced ESS, suggesting that exercise has a previously unexplored translational role catalyzing mRNA to proteins.

4.
Nat Commun ; 15(1): 4262, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802387

RESUMO

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Assuntos
Fixação de Nitrogênio , Filogenia , Nódulos Radiculares de Plantas , Simbiose , Simbiose/genética , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Evolução Molecular , Evolução Biológica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/microbiologia
5.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329875

RESUMO

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transcriptoma/genética , Raízes de Plantas/genética , Linhagem da Célula/genética , Reguladores de Crescimento de Plantas
6.
Electron Mark ; 33(1): 48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724180

RESUMO

Data has become an indispensable input, throughput, and output for the healthcare industry. In recent years, omics technologies such as genomics and proteomics have generated vast amounts of new data at the cellular level including molecular, structural, and functional levels. Cellular data holds the potential to innovate therapeutics, vaccines, diagnostics, consumer products, or even ancestry services. However, data at the cellular level is generated with rapidly evolving omics technologies. These technologies use scientific knowledge from resource-rich environments. This raises the question of how new ventures can use cellular-level data from omics technologies to create new products and scale their business. We report on a series of interviews and a focus group discussion with entrepreneurs, investors, and data providers. By conceptualizing omics technologies as external enablers, we show how characteristics of cellular-level data negatively affect the combination mechanisms that drive venture creation and growth. We illustrate how data characteristics set boundary conditions for innovation and entrepreneurship and highlight how ventures seek to mitigate their impact. Supplementary Information: The online version contains supplementary material available at 10.1007/s12525-023-00669-w.

7.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526283

RESUMO

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Assuntos
Genes de Plantas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Software , Transcriptoma/genética , Atlas como Assunto
8.
New Phytol ; 238(6): 2561-2577, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807327

RESUMO

Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.


Assuntos
Laccaria , Micorrizas , Populus , Micorrizas/fisiologia , Árvores/genética , Árvores/metabolismo , Raízes de Plantas/metabolismo , Metilação de DNA/genética , DNA , Populus/metabolismo , Laccaria/genética
9.
BMC Biol ; 20(1): 252, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352404

RESUMO

BACKGROUND: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules. RESULTS: We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia. CONCLUSIONS: Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/fisiologia
10.
Trends Plant Sci ; 27(11): 1095-1098, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055915

RESUMO

Some plants have acquired traits of remarkable adaptive value to thrive under stress. Transferring these traits to crops could improve agriculture, but uncovering the toolkit required has remained largely elusive. We propose that single-cell genomics offers a framework to compare species with contrasting developmental traits and to identify the regulators of evolutionary innovations.


Assuntos
Produtos Agrícolas , Genômica , Agricultura , Evolução Biológica , Produtos Agrícolas/genética , Fenótipo
11.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178121

RESUMO

Differentiation of stem cells in the plant apex gives rise to aerial tissues and organs. Presently, we lack a lineage map of the shoot apex cells in woody perennials - a crucial gap considering their role in determining primary and secondary growth. Here, we used single-nuclei RNA-sequencing to determine cell type-specific transcriptomes of the Populus vegetative shoot apex. We identified highly heterogeneous cell populations clustered into seven broad groups represented by 18 transcriptionally distinct cell clusters. Next, we established the developmental trajectories of the epidermis, leaf mesophyll and vascular tissue. Motivated by the high similarities between Populus and Arabidopsis cell population in the vegetative apex, we applied a pipeline for interspecific single-cell gene expression data integration. We contrasted the developmental trajectories of primary phloem and xylem formation in both species, establishing the first comparison of vascular development between a model annual herbaceous and a woody perennial plant species. Our results offer a valuable resource for investigating the principles underlying cell division and differentiation conserved between herbaceous and perennial species while also allowing us to examine species-specific differences at single-cell resolution.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Populus/genética , Populus/metabolismo , RNA/metabolismo , Transcriptoma/genética , Xilema/metabolismo
12.
Plant Physiol ; 190(3): 1699-1714, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929094

RESUMO

The transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp., which is not part of the NFC, contains eight copies of NIN with diversified protein sequence and expression patterns. Lipo-chitooligosaccharides (LCOs) are produced by rhizobia and a wide range of fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root formation. RNAseq analysis of Populus sp. treated with purified LCO showed induction of the PtNIN2 subfamily. Moreover, the expression of PtNIN2b correlated with the formation of lateral roots and was suppressed by cytokinin treatment. Constitutive expression of PtNIN2b overcame the inhibition of lateral root development by cytokinin under high nitrate conditions. Lateral root induction in response to LCOs likely represents an ancestral function of NIN retained and repurposed in nodulating plants, as we demonstrate that the role of NIN in LCO-induced root branching is conserved in both Populus sp. and legumes. We further established a visual marker of LCO perception in Populus sp. roots, the putative sulfotransferase PtSS1 that can be used to study symbiotic interactions with the bacterial and fungal symbionts of Populus sp.


Assuntos
Populus , Rhizobium , Populus/genética , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Organogênese Vegetal , Simbiose , Quitina/metabolismo , Citocininas , Raízes de Plantas/metabolismo
13.
Transp Res Interdiscip Perspect ; 15: 100668, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35971332

RESUMO

The COVID-19 pandemic marked a global disruption of unprecedented scale which was closely associated with human mobility. Since mobility acts as a facilitator for spreading the virus, individuals were forced to reconsider their respective behaviors. Despite numerous studies having detected behavioral changes during the first lockdown period (spring 2020), there is a lack of longitudinal perspectives that can provide insights into the intra-pandemic dynamics and potential long-term effects. This article investigates COVID-19-induced mobility-behavioral transformations by analyzing travel patterns of Berlin residents during a 20-month pandemic period and comparing them to the pre-pandemic situation. Based on quantitative analysis of almost 800,000 recorded trips, our longitudinal examination revealed individuals having reduced average monthly travel distances by ∼20%, trip frequencies by ∼11%, and having switched to individual modes. Public transportation has suffered a continual regression, with trip frequencies experiencing a relative long-term reduction of ∼50%, and a respective decrease of traveled distances by ∼43%. In contrast, the bicycle (rather than the car) was the central beneficiary, indicated by bicycle-related trip frequencies experiencing a relative long-term increase of ∼53%, and travel distances increasing by ∼117%. Comparing behavioral responses to three pandemic waves, our analysis revealed each wave to have created unique response patterns, which show a gradual softening of individuals' mobility related self-restrictions. Our findings contribute to retracing and quantifying individuals' changing mobility behaviors induced by the pandemic, and to detecting possible long-term effects that may constitute a "new normal" of an entirely altered urban mobility landscape.

14.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328578

RESUMO

Self-assembled cyclic peptide nanotubes with alternating D- and L-amino acid residues in the sequence of each subunit have attracted a great deal of attention due to their potential for new nanotechnology and biomedical applications, mainly in the field of antimicrobial peptides. Molecular dynamics simulations can be used to characterize these systems with atomic resolution at different time scales, providing information that is difficult to obtain via wet lab experiments. However, the performance of classical force fields typically employed in the simulation of biomolecules has not yet been extensively tested with this kind of highly constrained peptide. Four different classical force fields (AMBER, CHARMM, OPLS, and GROMOS), using a nanotube formed by eight D,L-α-cyclic peptides inserted into a lipid bilayer as a model system, were employed here to fill this gap. Significant differences in the pseudo-cylindrical cavities formed by the nanotubes were observed, the most important being the diameter of the nanopores, the number and location of confined water molecules, and the density distribution of the solvent molecules. Furthermore, several modifications were performed on GROMOS54a7, aiming to explore acceleration strategies of the MD simulations. The hydrogen mass repartitioning (HMR) and hydrogen isotope exchange (HIE) methods were tested to slow down the fastest degrees of freedom. These approaches allowed a significant increase in the time step employed in the equation of the motion integration algorithm, from 2 fs up to 5-7 fs, with no serious changes in the structural and dynamical properties of the nanopores. Subtle differences with respect to the simulations with the unmodified force fields were observed in the concerted movements of the cyclic peptides, as well as in the lifetime of several H-bonds. All together, these results are expected to contribute to better understanding of the behavior of self-assembled cyclic peptide nanotubes, as well as to support the methods tested to speed up general MD simulations; additionally, they do provide a number of quantitative descriptors that are expected to be used as a reference to design new experiments intended to validate and complement computational studies of antimicrobial cyclic peptides.


Assuntos
Nanotubos de Peptídeos , Nanotubos , Hidrogênio/química , Isótopos , Simulação de Dinâmica Molecular , Nanotubos/química , Peptídeos Cíclicos/química
15.
New Phytol ; 234(2): 634-649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092309

RESUMO

Nitrogen is one of the most inaccessible plant nutrients, but certain species have overcome this limitation by establishing symbiotic interactions with nitrogen-fixing bacteria in the root nodule. This root-nodule symbiosis (RNS) is restricted to species within a single clade of angiosperms, suggesting a critical, but undetermined, evolutionary event at the base of this clade. To identify putative regulatory sequences implicated in the evolution of RNS, we evaluated the genomes of 25 species capable of nodulation and identified 3091 conserved noncoding sequences (CNS) in the nitrogen-fixing clade (NFC). We show that the chromatin accessibility of 452 CNS correlates significantly with the regulation of genes responding to lipochitooligosaccharides in Medicago truncatula. These included 38 CNS in proximity to 19 known genes involved in RNS. Five such regions are upstream of MtCRE1, Cytokinin Response Element 1, required to activate a suite of downstream transcription factors necessary for nodulation in M. truncatula. Genetic complementation of an Mtcre1 mutant showed a significant decrease of nodulation in the absence of the five CNS, when they are driving the expression of a functional copy of MtCRE1. CNS identified in the NFC may harbor elements required for the regulation of genes controlling RNS in M. truncatula.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Regulação da Expressão Gênica de Plantas , Genômica , Medicago truncatula/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
16.
Plant Physiol ; 188(1): 560-575, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34599592

RESUMO

Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.


Assuntos
Alquil e Aril Transferases/metabolismo , Citocininas/genética , Citocininas/metabolismo , Medicago truncatula/genética , Medicago truncatula/fisiologia , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Alquil e Aril Transferases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Organogênese/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia
17.
J Physiol ; 600(6): 1473-1495, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34807463

RESUMO

Excess nutrition causes loss of olfactory sensory neurons (OSNs) and reduces odour discrimination and odour perception in mice. To separate diet-induced obesity from the consumption of dietary fat, we designed pair-feeding experiments whereby mice were maintained on isocaloric diets for 5 months, which prevented increased fat storage. To test our hypothesis that adiposity was not a prerequisite for loss of OSNs and bulbar projections, we used male and female mice with an odorant receptor-linked genetic reporter (M72tauLacZ; Olfr160) to visualize neural circuitry changes resulting from elevated fat in the diet. Simultaneously we monitored glucose clearance (diagnostic for prediabetes), body fat deposition, ingestive behaviours, select inflammatory markers and energy metabolism. Axonal projections to defined olfactory glomeruli were visualized in whole-mount brains, and the number of OSNs was manually counted across whole olfactory epithelia. After being pair fed a moderately high-fat (MHF) diet, mice of both sexes had body weight, adipose deposits, energy expenditure, respiratory exchange ratios and locomotor activity that were unchanged from control-fed mice. Despite this, they were still found to lose OSNs and associated bulbar projections. Even with unchanged adipocyte storage, pair-fed animals had an elevation in TNF cytokines and an intermediate ability for glucose clearance. Albeit improving health metrics, access to voluntary running while consuming an ad libitum fatty diet still precipitated a loss of OSNs and associated axonal projections for male mice. Our results support that long-term macronutrient imbalance can drive anatomical loss in the olfactory system regardless of total energy expenditure. KEY POINTS: Obesity can disrupt the structure and function of organ systems, including the olfactory system that is important for food selection and satiety. We designed dietary treatments in mice such that mice received fat, but the total calories provided were the same as in control diets so that they would not gain weight or increase adipose tissue. Mice that were not obese but consumed isocaloric fatty diets still lost olfactory neuronal circuits, had fewer numbers of olfactory neurons, had an elevation in inflammatory signals and had an intermediate ability to clear glucose (prediabetes). Mice were allowed access to running wheels while consuming fatty diets, yet still lost olfactory structures. We conclude that a long-term imbalance in nutrition that favours fat in the diet disrupts the olfactory system of mice in the absence of obesity.


Assuntos
Neurônios Receptores Olfatórios , Estado Pré-Diabético , Animais , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta , Feminino , Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Estado Pré-Diabético/complicações
18.
Front Cell Neurosci ; 15: 662184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239417

RESUMO

Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.

19.
Front Plant Sci ; 12: 670497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113369

RESUMO

Perennial species in the boreal and temperate regions are subject to extreme annual variations in light and temperature. They precisely adapt to seasonal changes by synchronizing cycles of growth and dormancy with external cues. Annual dormancy-growth transitions and flowering involve factors that integrate environmental and endogenous signals. MADS-box transcription factors have been extensively described in the regulation of Arabidopsis flowering. However, their participation in annual dormancy-growth transitions in trees is minimal. In this study, we investigate the function of MADS12, a Populus tremula × alba SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1)-related gene. Our gene expression analysis reveals that MADS12 displays lower mRNA levels during the winter than during early spring and mid-spring. Moreover, MADS12 activation depends on the fulfillment of the chilling requirement. Hybrid poplars overexpressing MADS12 show no differences in growth cessation and bud set, while ecodormant plants display an early bud break, indicating that MADS12 overexpression promotes bud growth reactivation. Comparative expression analysis of available bud break-promoting genes reveals that MADS12 overexpression downregulates the GIBBERELLINS 2 OXIDASE 4 (GA2ox4), a gene involved in gibberellin catabolism. Moreover, the mid-winter to mid-spring RNAseq profiling indicates that MADS12 and GA2ox4 show antagonistic expression during bud dormancy release. Our results support MADS12 participation in the reactivation of shoot meristem growth during ecodormancy and link MADS12 activation and GA2ox4 downregulation within the temporal events that lead to poplar bud break.

20.
Tree Physiol ; 41(11): 2216-2227, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960379

RESUMO

Although the CRISPR/Cas9 system has been successfully used for crop breeding, its application remains limited in forest trees. Here, we describe an efficient gene editing strategy for hybrid poplar, (Populus tremula × alba INRA clone 717-1B4) based on the Golden Gate MoClo cloning. To test the system efficiency for generating single gene mutants, two single guide RNAs (sgRNAs) were designed and incorporated into the MoClo Tool Kit level 2 binary vector with the Cas9 expression cassette to mutate the SHORT ROOT (SHR) gene. Moreover, we also tested its efficiency for introducing mutations in two genes simultaneously by expressing one sgRNA targeting a single site of the YUC4 gene and the other sgRNA targeting the PLT1 gene. For a robust evaluation of the approach, we repeated the strategy to target the LBD12 and LBD4 genes simultaneously, using an independent construct. We generated hairy roots by Agrobacterium rhizogenes-mediated leaf transformation. Sequencing results confirmed the CRISPR/Cas9-mediated mutation in the targeted sites of PtaSHR. Biallelic and homozygous knockout mutations were detected. A deletion spanning both target sites and small insertions/deletions were the most common mutations. Out of the 22 SHR alleles sequenced, 21 were mutated. The phenotype's characterization showed that transgenic roots with biallelic mutations for the SHR gene lacked a defined endodermal single cell layer, suggesting a conserved gene function similar to its homolog in Arabidopsis Arabidopsis thaliana (L.) Heynh. Sequencing results also revealed the high efficiency of the system for generating double mutants. Biallelic mutations for both genes in the yuc4/plt1 and lbd12/lbd4 roots were detected in three (yuc4/plt1) and two (lbd12/lbd4) out of four transgenic roots evaluated. A small deletion or a single nucleotide insertion at the single target site was the most common mutations. This CRISPR/Cas9 strategy arises as a rapid, simple and standardized gene-editing tool to evaluate the gene role in essential developmental programs such as radial cell differentiation of poplar roots.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Populus/genética , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA