Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 164(1): 191-204, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17560659

RESUMO

The correlation between post-mortem data and in-vivo brain images is of high interest for studying neurodegenerative diseases. This paper describes a protocol that matches a series of stained histological slices of a baboon brain with an anatomical MRI scan of the same subject using an intermediate 3D-consistent volume of "blockface" photographs taken during the sectioning process. Each stained histological section of the baboon brain was first registered to its corresponding blockface photograph using a novel "hemi-rigid" transformation. This piecewise rigid 2D transformation was specifically adapted to the registration of slices which contained both hemispheres. Subsenquently, to correct the global 3D deformations of the brain caused by histological preparation and fixation, a 3D elastic transformation was estimated between the blockface volume and the MRI data. This 3D elastic transformation was then applied to the histological volume previously aligned using the hemi-rigid method to complete the registration of the series of stained histological slices with the MRI data. We assessed the efficacy of our method by evaluating the quality of matching of anatomical features as well as the difference of volume measurements between the MRI and the histological images. Two complete baboon brains (with the exception of cerebellum) were successfully processed using our protocol.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroanatomia/métodos , Papio papio/anatomia & histologia , Animais , Mapeamento Encefálico/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Neuroanatomia/instrumentação , Neurofisiologia/instrumentação , Neurofisiologia/métodos , Mudanças Depois da Morte , Coloração e Rotulagem
2.
Mol Ther ; 15(8): 1444-51, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17505477

RESUMO

Huntington's disease (HD) is a neurological disorder characterized by striatal degeneration, motor symptoms and complex neuropsychiatric alterations. There is currently no genetic model of HD in non-human primates (NHPs). In this study we investigated neuropathological and behavioral changes following injections of lentiviral vectors encoding a fragment of mutated huntingtin (Htt171-82Q) into the dorsolateral sensorimotor putamen of macaques. In the first study, we injected Htt171-82Q into one hemisphere and a lentiviral vector encoding Htt171-19Q or saline into the other, and studied the animals for 9 weeks. During this period, when apomorphine was administered into Htt171-19Q/82Q animals, it induced progressive chorea, dystonia and ipsilateral turning behavior, whereas animals infected with Htt171-19Q/19Q showed no abnormal behavior. After 9 weeks, the putamen of animals infected with Htt171-82Q presented neuritic and nuclear Htt aggregates, reactive astrocytes and loss of the neuronal marker NeuN. In a second study, we injected Htt171-82Q bilaterally into the dorsolateral putamen. From week 15 after infection, these animals progressively developed spontaneous dyskinesia of the legs, arms, and trunk and, in one case, tics that persisted for up to 30 weeks. The present study constitutes a proof-of-principle for the development of a genetic model of HD in NHP.


Assuntos
Macaca fascicularis/metabolismo , Movimento , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Putamen/metabolismo , Animais , Biomarcadores , Dopamina/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Glutamina/genética , Glutamina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Macaca fascicularis/genética , Masculino , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fragmentos de Peptídeos/genética , Fenótipo
3.
Brain Res Bull ; 68(4): 233-48, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16377429

RESUMO

Although the effect of overtraining on learning processes in rats has long been studied, only few studies have specifically assessed the differential involvement of brain areas in habit formation. We used the analysis of expression of the immediate early gene Fra-1 as a tool to differentiate the areas involved in training and overtraining. Behavioural experiments showed that instrumental performance (signalled and non-signalled instrumental tasks), but not pavlovian conditioned responses, were no longer under the control of the incentive value of the reward after overtraining. The number of Fra-1 expressing neurons was increased in SNc/VTA and ventral hippocampus after training in all groups independently of behavioural performance. After overtraining, the number of learning-induced Fra-1 immunoreactive neurons remained increased in the SNc/VTA. However, in CA1, it significantly decreased in the signalled instrumental group, whereas it further increased in the pavlovian group, with no modulation in non-signalled instrumental animals. The increase in the number of Fra-1 neurons observed after training in SNc/VTA and ventral hippocampus suggests that a general underlying incentive process regulates Fra-1. Moreover, the sustained increased expression of Fra-1 in the SNc/VTA after instrumental overtraining could reflect a possible role of dopaminergic neurons in habit formation.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Animais , Mapeamento Encefálico , Condicionamento Operante , Regulação da Expressão Gênica , Genes Precoces , Hábitos , Modelos Animais , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Transgenic Res ; 14(4): 373-84, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16201404

RESUMO

The transplantation of fetal porcine neurons is a potential therapeutic strategy for the treatment of human neurodegenerative disorders. A major obstacle to xenotransplantation, however, is the immune-mediated rejection that is resistant to conventional immunosuppression. To determine whether genetically modified donor pig neurons could be used to deliver immunosuppressive proteins locally in the brain, transgenic pigs were developed that express the human T cell inhibitory molecule hCTLA4-Ig under the control of the neuron-specific enolase promoter. Expression was found in various areas of the brain of transgenic pigs, including the mesencephalon, hippocampus and cortex. Neurons from 28-day old embryos secreted hCTLA4-Ig in vitro and this resulted in a 50% reduction of the proliferative response of human T lymphocytes in xenogenic proliferation assays. Transgenic embryonic neurons also secreted hCTLA4-Ig and had developed normally in vivo several weeks after transplantation into the striatum of immunosuppressed rats that were used here to study the engraftment in the absence of immunity. In conclusion, these data show that neurons from our transgenic pigs express hCTLA4-Ig in situ and support the use of this material in future pre-clinical trials in neuron xenotransplantation.


Assuntos
Encéfalo/imunologia , Transplante de Tecido Fetal/imunologia , Imunoconjugados/genética , Neurônios/imunologia , Transgenes , Transplante Heterólogo/imunologia , Abatacepte , Animais , Animais Geneticamente Modificados , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Rejeição de Enxerto/prevenção & controle , Humanos , Imunoconjugados/metabolismo , Imuno-Histoquímica , Terapia de Imunossupressão/métodos , Neurônios/transplante , Ratos/genética , Suínos/genética , Linfócitos T , Imunologia de Transplantes
5.
J Neurosci ; 25(11): 2771-80, 2005 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15772337

RESUMO

Acquisition and performance of instrumental actions are assumed to require both action-outcome and stimulus-response (S-R) habit processes. Over the course of extended training, control over instrumental performance shifts from goal-directed action-outcome associations to S-R associations that progressively gain domination over behavior. Lesions of the lateral part of the dorsal striatum disrupt this process, and rats with lesions to the lateral striatum showed selective sensitivity to devaluation of the instrumental outcome (Yin et al., 2004), indicating that this area is necessary for habit formation. The present experiment further explored the basis of this dysfunction by examining the ability of rats subjected to bilateral 6-hydroxydopamine lesions of the nigrostriatal dopaminergic pathway to develop behavioral autonomy with overtraining. Rats were given extended training on two cued instrumental tasks associating a stimulus (a tone or a light) with an instrumental action (lever press or chain pull) and a food reward (pellets or sucrose). Both tasks were run daily in separate sessions. Overtraining was followed by a test of goal sensitivity by satiety-specific devaluation of the reward. In control animals, one action (lever press) was insensitive to reward devaluation, indicating that it became a habit, whereas the second action (chain pull) was still sensitive to goal devaluation. This result provides evidence that the development of habit learning may depend on the characteristics of the response. In dopamine-depleted rats, lever press and chain pull remained sensitive to reward devaluation, evidencing a role of striatal dopamine transmission in habit formation.


Assuntos
Condicionamento Operante/fisiologia , Corpo Estriado/lesões , Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Hábitos , Animais , Comportamento Animal , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/patologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica/métodos , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Recompensa , Simpatolíticos/toxicidade , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Neuron ; 44(5): 769-78, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15572109

RESUMO

A concept in Parkinson's disease postulates that motor cortex may pattern abnormal rhythmic activities in the basal ganglia, underlying the genesis of observed motor symptoms. We conducted a preclinical study of electrical interference in the primary motor cortex using a chronic MPTP primate model in which dopamine depletion was progressive and regularly documented using 18F-DOPA positron tomography. High-frequency motor cortex stimulation significantly reduced akinesia and bradykinesia. This behavioral benefit was associated with an increased metabolic activity in the supplementary motor area as assessed with 18-F-deoxyglucose PET, a normalization of mean firing rate in the internal globus pallidus (GPi) and the subthalamic nucleus (STN), and a reduction of synchronized oscillatory neuronal activities in these two structures. Motor cortex stimulation is a simple and safe procedure to modulate subthalamo-pallido-cortical loop and alleviate parkinsonian symptoms without requiring deep brain stereotactic surgery.


Assuntos
Intoxicação por MPTP/fisiopatologia , Córtex Motor/fisiopatologia , Animais , Doença Crônica , Modelos Animais de Doenças , Estimulação Elétrica , Eletrofisiologia , Fluordesoxiglucose F18 , Intoxicação por MPTP/complicações , Intoxicação por MPTP/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/fisiopatologia , Papio , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Recuperação de Função Fisiológica
7.
Neurobiol Dis ; 16(2): 428-39, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15193299

RESUMO

Glial cell line-derived neurotrophic factor (GDNF), a potent neurotrophic factor with restorative effects in a variety of rodent and primate models of Parkinson's disease (PD), could be of therapeutic value to PD. In this study, we show that intraventricular chronic infusion of low doses of GDNF using encapsulated genetically engineered C2C12 cells can exert: (1) transient recovery of motor deficits (hypokinesia); (2) significant protection of intrinsic striatal dopaminergic function in the immediate vicinity of the site of implantation of the capsule in the caudate nucleus, and (3) significant-long-lasting-neurotrophic properties at the nigral level with an increase volume of the cell bodies. These observations confirm the potent neurorestorative potential of GDNF in PD and the safety/efficacy of the encapsulation technology as a means to deliver in situ this neurotrophic cytokine even using an intraventricular approach.


Assuntos
Di-Hidroxifenilalanina/análogos & derivados , Terapia Genética/métodos , Fatores de Crescimento Neural/genética , Neuroglia/transplante , Transtornos Parkinsonianos/terapia , Animais , Cápsulas , Radioisótopos de Flúor , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ventrículos Laterais , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Papio , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Substância Negra/patologia , Tomografia Computadorizada de Emissão , Tirosina 3-Mono-Oxigenase/metabolismo
8.
J Neurochem ; 88(4): 928-38, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14756814

RESUMO

We quantified putamen and prefrontal cortex metabolites in macaques with simian immunodeficiency virus infection and searched for virological and histological correlates. Fourteen asymptomatic macaques infected since 8-78 months (median: 38) were compared with eight uninfected ones. Absolute concentrations of acetate, alanine, aspartate, choline, creatine, GABA, glutamate, glutamine, lactate, myo-inositol, N-acetylaspartate, taurine and valine were determined by ex vivo proton magnetic resonance spectroscopy. Glutamate concentration in the CSF was determined by HPLC. Gliosis was assessed by glial fibrillary acidic protein and CD68 immunohistochemistry. Glutamate concentration was slightly increased in the prefrontal cortex (19%, p = 0.0152, t-test) and putamen (13%, p = 0.0354, t-test) of the infected macaques, and was unaffected in the CSF. Myo-inositol concentration was increased in the prefrontal cortex only (27%, p = 0.0136). The concentrations of glutamate and myo-inositol in the prefrontal cortex were higher in the animals with marked or intense microgliosis (p = 0.0114). The other studied metabolites, including N-acetylaspartate, were not altered. Glutamate concentration may thus increase in the cerebral parenchyma in asymptomatic animals, but is not accompanied by a detectable decrease in N-acetylaspartate concentration (neuronal dysfunction). Thus, there are probably compensatory mechanisms that may limit glutamate increase and/or counterbalance its effects.


Assuntos
Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Putamen/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Química Encefálica , Linfócitos T CD4-Positivos/virologia , Viroses do Sistema Nervoso Central/diagnóstico , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Macaca fascicularis , Espectroscopia de Ressonância Magnética/métodos , Masculino , Plasma/virologia , Córtex Pré-Frontal/virologia , Proteínas/metabolismo , Putamen/virologia , Fatores de Tempo , Carga Viral/métodos
9.
J Neurosci ; 22(11): 4478-86, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12040055

RESUMO

Ciliary neurotrophic factor (CNTF) is a potent protective factor for striatal neurons in animal models of Huntington's disease (HD). Clinical application of this potential therapeutic still requires the design and optimization of delivery systems. In the case of HD, spatial spread in the vast volume occupied by the striatum and long-term delivery of the factor are particular challenges for these systems. We explored the potential of adenovirus-mediated gene transfer to fulfill these requirements by studying the functional and anatomical effects of single-site striatal delivery of CNTF recombinant vectors in a rat model of HD. In an initial series of experiments, unilateral injections of CNTF adenovirus were performed in rats 10, 30, or 90 d before a 5 d neurotoxic treatment with systemic 3-nitropropionic acid (3NP). Preservation of striatal neurons was observed at all time points, demonstrating temporally extended neuroprotective effects of the CNTF adenovirus. In a second series of experiments, bilateral injections of CNTF adenovirus were performed in the medial aspect of the striatum 10 d before starting 3NP intoxication. Despite placement of the CNTF-producing vector outside the lateral striatal area susceptible to lesion, massive protection of corticostriatopallidal circuits was observed, associated with significant behavioral benefits. This spatial spread of neuroprotection is discussed with reference to the retrograde transport of the adenovirus vector and the anterograde transport of the transgenic CNTF. Overall, adenovirus-mediated CNTF gene transfer appears to be a potentially useful delivery system for widespread, long-term circuit neuroprotection in HD patients.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Fator Neurotrófico Ciliar/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Globo Pálido/efeitos dos fármacos , Doença de Huntington/terapia , Adenoviridae/genética , Animais , Comportamento Animal/efeitos dos fármacos , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Globo Pálido/patologia , Doença de Huntington/induzido quimicamente , Doença de Huntington/patologia , Masculino , Microinjeções , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Nitrocompostos , Propionatos , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos Lew
10.
Eur J Neurosci ; 3(9): 855-865, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-12106452

RESUMO

The development of the major morphological and electrophysiological properties of presumptive Purkinje cells (PCs) was studied in primary cultures of rat cerebellum dissociated on the 14th embryonic day, when PCs are minimally differentiated and migrate in vivo. PCs were identified with a specific antibody to calbindin D-28K (CaBP), which allowed visualization of the different morphological types of PCs between 3 and 29 days in vitro (DIV). CaBP-immunopositive cells were first detected at 3 DIV. Thereafter, the shape of these cells resembled some of those described in vivo. After 20 DIV, 95% of the CaBP-immunopositive cells had characteristic PC dendritic trees, although they were very atrophic. Glial cells immunopositive for the glial fibrillary acidic protein (GFAP) were first seen at 3 DIV. Thereafter GFAP-immunopositive cells resembled Bergmann cells or velate astrocytes. Neurons regarded as PCs were studied electrophysiologically using the patch-clamp whole-cell configuration. Voltage-dependent, tetrodotoxin-sensitive fast inward currents were virtually absent at 2 - 4 DIV, but increased between 7 and 14 DIV to reach two-thirds of the amplitude obtained after 15 DIV. These currents were large enough to give rise to overshooting spikes as early as 7 DIV in the current-clamp mode. This time schedule is in keeping with that of PCs developed in situ. The tetraethylammonium-sensitive, slowly inactivating outward currents had reached two-thirds of the amplitude obtained after 15 DIV by 3 - 4 DIV. Their amplitude remained stable between 4 and 7 DIV, and increased to their maximal value during 7 - 14 DIV, with a marked shortening of action potentials. 4-Aminopyridine-sensitive, fast-inactivating outward currents might also be associated with development, since they were present in 66% of the cells between 7 and 14 DIV but in only 39% from 15 to 29 DIV; however, their amplitude did not vary with time. Presumptive PCs bore l-glutamate-activated receptors, which preceded the emergence of kynurenate-sensitive, spontaneous synaptic currents at 7 DIV. These currents were sometimes intermingled with inhibitory currents, although presumptive PCs were sensitive to gamma-aminobutyrate at 7 DIV. The present model represents some unequivocal features of PC development, although the PCs used had undergone minimal differentiation in vivo and were cultured in a very disturbed cellular environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...