Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(7): 1800-1822, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38109712

RESUMO

The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.


Assuntos
Flores , Ranunculales , Filogenia , Evolução Biológica , Folhas de Planta/genética
2.
J Exp Bot ; 74(5): 1448-1459, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512646

RESUMO

MADS-box transcription factors are important regulators of floral organ identity through their binding to specific motifs, termed CArG, in the promoter of their target genes. Petal initiation and development depend on class A and B genes, but MADS-box genes of the APETALA3 (AP3) clade are key regulators of this process. In the early diverging eudicot Nigella damascena, an apetalous [T] morph is characterized by the lack of expression of the NdAP3-3 gene, with its expression being petal-specific in the wild-type [P] morph. All [T] morph plants are homozygous for an NdAP3-3 allele with a Miniature Inverted-repeat Transposable Element (MITE) insertion in the second intron of the gene. Here, we investigated to which extent the MITE insertion impairs regulation of the NdAP3-3 gene. We found that expression of NdAP3-3 is initiated in the [T] morph, but the MITE insertion prevents its positive self-maintenance by affecting the correct splicing of the mRNA. We also found specific CArG features in the promoter of the NdAP3-3 genes with petal-specific expression. However, they are not sufficient to drive expression only in petals of transgenic Arabidopsis, highlighting the existence of Nigella-specific cis/trans-acting factors in regulating AP3 paralogs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nigella damascena , Nigella damascena/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Arabidopsis/metabolismo , Flores , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
3.
Front Plant Sci ; 13: 1055196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531353

RESUMO

TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.

4.
Front Plant Sci ; 12: 660803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149759

RESUMO

Even though petals are homoplastic structures, their identity consistently involves genes of the APETALA3 (AP3) lineage. However, the extent to which the networks downstream of AP3 are conserved in species with petals of different evolutionary origins is unknown. In Ranunculaceae, the specificity of the AP3-III lineage offers a great opportunity to identify the petal gene regulatory network in a comparative framework. Using a transcriptomic approach, we investigated putative target genes of the AP3-III ortholog NdAP3-3 in Nigella damascena at early developmental stages when petal identity is determined, and we compared our data with that from selected eudicot species. We generated a de novo reference transcriptome to carry out a differential gene expression analysis between the wild-type and mutant NdAP3-3 genotypes differing by the presence vs. absence of petals at early stages of floral development. Among the 1,620 genes that were significantly differentially expressed between the two genotypes, functional annotation suggested a large involvement of nuclear activities, including regulation of transcription, and enrichment in processes linked to cell proliferation. Comparing with Arabidopsis data, we found that highly conserved genes between the two species are enriched in homologs of direct targets of the AtAP3 protein. Integrating AP3-3 binding site data from another Ranunculaceae species, Aquilegia coerulea, allowed us to identify a set of 18 putative target genes that were conserved between the three species. Our results suggest that, despite the independent evolutionary origin of petals in core eudicots and Ranunculaceae, a small conserved set of genes determines petal identity and early development in these taxa.

5.
Front Plant Sci ; 10: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740117

RESUMO

Proteaceae are a basal eudicot family with a highly conserved floral groundplan but which displays considerable variation in other aspects of floral and inflorescence morphology. Their morphological diversity and phylogenetic position make them good candidates for understanding the evolution of floral architecture, in particular the question of the homology of the undifferentiated perianth with the differentiated perianth of core eudicots, and the mechanisms underlying the repeated evolution of zygomorphy. In this paper, we combine a morphological approach to explore floral ontogenesis and a transcriptomic approach to access the genes involved in floral organ identity and development, focusing on Grevillea juniperina, a species from subfamily Grevilleoideae. We present developmental data for Grevillea juniperina and three additional species that differ in their floral symmetry using stereomicroscopy, SEM and High Resolution X-Ray Computed Tomography. We find that the adnation of stamens to tepals takes place at early developmental stages, and that the establishment of bilateral symmetry coincides with the asymmetrical growth of the single carpel. To set a framework for understanding the genetic basis of floral development in Proteaceae, we generated and annotated de novo a reference leaf/flower transcriptome from Grevillea juniperina. We found Grevillea homologs of all lineages of MADS-box genes involved in floral organ identity. Using Arabidopsis thaliana gene expression data as a reference, we found homologs of other genes involved in floral development in the transcriptome of G. juniperina. We also found at least 21 class I and class II TCP genes, a gene family involved in the regulation of growth processes, including floral symmetry. The expression patterns of a set of floral genes obtained from the transcriptome were characterized during floral development to assess their organ specificity and asymmetry of expression.

6.
Plant J ; 90(3): 560-572, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28218997

RESUMO

Procambial and cambial stem cells provide the initial cells that allow the formation of vascular tissues. WOX4 and WOX14 have been shown to act redundantly to promote procambial cell proliferation and differentiation. Gibberellins (GAs), which have an important role in wood formation, also stimulate cambial cell division. Here we show that the loss of WOX14 function phenocopies some traits of GA-deficient mutants that can be complemented by exogenous GA application, whereas WOX14 overexpression stimulates the expression of GA3ox anabolism genes and represses GA2ox catabolism genes, promoting the accumulation of bioactive GA. More importantly, our data clearly indicate that WOX14 but not WOX4 promotes vascular cell differentiation and lignification in inflorescence stems of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Câmbio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/genética
7.
Front Plant Sci ; 5: 290, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009544

RESUMO

Histone H3 lysine 4 trimethylation (H3K4me3) has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

8.
Genetics ; 196(1): 149-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24172132

RESUMO

The Saccharomyces cerevisiae Aft1 and Kluyveromyces lactis KlAft are orthologous yeast transcription activators that regulate the expression of the same group of iron-uptake genes but bind to the different DNA sites: TGCACCC for Aft1 and PuCACCC for KlAft. To establish whether the DNA-binding mechanisms of Aft1 and KlAft have diverged during the evolution of the Aft-type transcription factor, we examined the function of a nonconserved region in their DNA-binding domains. A large part of this region is composed of a sequence predicted to be disordered in structure and potentially phosphorylated. We show with deletion mutant analyses that this sequence is essential for the binding of Aft1 to its DNA site and for the iron uptake and growth of S. cerevisiae under iron-limited conditions. We constructed hybrid proteins by exchanging the nonconserved regions of Aft1 and KlAft. We show that the Aft1 region is necessary and sufficient for KlAft to bind efficiently to the Aft1 DNA site in S. cerevisiae and to complement the iron-dependent phenotype of the aft1Δaft2Δ mutant. This demonstrates that the changes in the nonconserved region of the Aft-type DNA-binding domain have led to changes in the DNA-binding specificity and have major consequences for the regulation of iron homeostasis. The combination of bioinformatic and experimental analyses indicates that the sequence TGCACCC is the most probable ancestral Aft-type element. Our findings suggest that the changes in the nonconserved region of the DNA-binding domain are responsible for the evolution of the TGCACCC sequence toward PuCACCC in the K. lactis species.


Assuntos
Proteínas de Ligação a DNA/genética , Kluyveromyces/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Deleção de Sequência
9.
PLoS One ; 6(11): e28224, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140554

RESUMO

Ethylene signaling pathway leads to rapid gene activation by two hierarchies of transcription factors with EIN3/EIL proteins as primary ones and ERF proteins as secondary ones. The role of chromatin modifications during the rapid gene activation is not known. In this work we studied trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), two opposite histone methylation marks for gene activity, during the induction course of three ethylene-responsive genes (ERF1, AtERF14 and ChiB). We found that the three genes displayed different histone modification profiles before induction. After induction, H3K4me3 was increased in the 5' region and the gene body of ERF1, while H3K27me3 was decreased in the promoter of AtERF14. But the modification changes were later than the gene activation. Analysis of other rapidly inducible ERF genes confirmed the observation. In addition, histone H2A.Z occupancy on the three genes and the association of the H3K27me3-binding protein LHP1 with AtERF14 and ChiB were not affected by the inductive signal. However, the mutation of genes encoding H2A.Z and LHP1 attenuated and enhanced respectively the induction of target genes and altered H3K4me3. These results indicate that the induction of ethylene-responsive genes does not require immediate modulation of H3K4me3 and H3K27me3 and dissociation of LHP1 and H2A.Z from the targets, and suggest that the chromatin structure of the genes before induction is committed for transcriptional activation and that H3K4me3 is not required for ethylene-responsive gene activation, but may serve as a mark for gene activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Histonas/metabolismo , Aminoácidos Cíclicos/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética
10.
Biophys J ; 100(11): 2726-35, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641318

RESUMO

Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo. We had previously shown that under positive torsional constraints, nucleosomes can undergo a reversible chiral transition toward a state of positive topology. We demonstrate here that chromatin fibers comprising linker histones present a torsional plasticity similar to that of naked nucleosome arrays. Chromatosomes can undergo a reversible chiral transition toward a state of positive torsion (reverse chromatosome) without loss of linker histones.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Fenômenos Mecânicos , Fenômenos Biomecânicos , Cromatina/química , Montagem e Desmontagem da Cromatina , Histonas/química , Modelos Moleculares , Nucleossomos/química , Nucleossomos/metabolismo , Conformação Proteica , Rotação
11.
Mol Plant ; 3(4): 670-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20457643

RESUMO

Histone acetylation/deacetylation is a dynamic process and plays an important role in gene regulation. Histone acetylation homeostasis is regulated by antagonist actions of histone acetyltransferases (HAT) and deacetylases (HDAC). Plant genome encodes multiple HATs and HDACs. The Arabidopsis HAT gene AtGCN5/HAG1plays an essential role in many plant development processes, such as meristem function, cell differentiation, leaf and floral organogenesis, and responses to environmental conditions such as light and cold, indicating an important role of this HAT in the regulation of both long-term developmental switches and short-term inducible gene expression. AtGCN5 targets to a large number of promoters and is required for acetylation of several histone H3 lysine residues. Recruitment of AtGCN5 to target promoters is likely to be mediated by direct or indirect interaction with DNA-binding transcription factors and/or by interaction with acetylated histone lysine residues on the targets. Interplay between AtGCN5 and other HAT and HDAC is demonstrated to control specific regulatory pathways. Analysis of the role of AtGCN5 in light-inducible gene expression suggests a function of AtGCN5 in preparing chromatin commitment for priming inducible gene activation in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Histona Acetiltransferases/genética , Modelos Biológicos
12.
Genetics ; 183(1): 93-106, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581449

RESUMO

Iron homeostasis in fungi is regulated at the transcriptional level by two different mechanisms. It is mediated by a conserved GATA-type repressor in most fungi except in the yeast Saccharomyces cerevisiae, where it is controlled by the transcription activators Aft1 and Aft2. These activators are encoded by the paralogous genes AFT1 and AFT2, which result from the whole-genome duplication. Here, we explore regulation of iron homeostasis in the yeast Kluyveromyces lactis that diverged from S. cerevisiae before this event. We identify an ortholog of AFT1/AFT2, designated KlAFT, whose deletion leads to the inability to grow under iron limitation. We show with quantitative real-time PCR analysis that KlAft activates the transcription of all homologs of the Aft1-target genes involved in the iron transport at the cell surface in response to iron limitation. However, homologs of Aft2-specific target genes encoding intracellular iron transporters are regulated neither by KlAft nor by iron. Both bioinformatic and DNA binding and transcription analyses demonstrate that KlAft activates iron-responsive gene expression through the PuCACCC Aft-type sequence. Thus, K. lactis is the first documented species with a positive iron-transcriptional control mediated by only one copy of the Aft-type regulator. This indicates that this function was acquired before the whole-genome duplication and was then diversified into two regulators in S. cerevisiae.


Assuntos
Proteínas 14-3-3/fisiologia , Proteínas Reguladoras de Ferro/genética , Kluyveromyces/genética , Elementos de Resposta/fisiologia , Ativação Transcricional , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Ferro/farmacologia , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/metabolismo , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Transativadores/genética , Transativadores/metabolismo , Transativadores/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
13.
Mol Cell ; 27(1): 135-47, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17612496

RESUMO

Using magnetic tweezers to investigate the mechanical response of single chromatin fibers, we show that fibers submitted to large positive torsion transiently trap positive turns at a rate of one turn per nucleosome. A comparison with the response of fibers of tetrasomes (the [H3-H4](2) tetramer bound with approximately 50 bp of DNA) obtained by depletion of H2A-H2B dimers suggests that the trapping reflects a nucleosome chiral transition to a metastable form built on the previously documented right-handed tetrasome. In view of its low energy, <8 kT, we propose that this transition is physiologically relevant and serves to break the docking of the dimers on the tetramer that in the absence of other factors exerts a strong block against elongation of transcription by the main RNA polymerase.


Assuntos
Nucleossomos/metabolismo , Rotação , Fenômenos Biomecânicos , Proteínas de Membrana , Modelos Biológicos , Nucleossomos/ultraestrutura , Fatores de Tempo , Anormalidade Torcional
14.
J Mol Biol ; 370(3): 555-73, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17524417

RESUMO

CENP-A is a histone variant that replaces conventional H3 in nucleosomes of functional centromeres. We report here, from reconstitutions of CENP-A- and H3-containing nucleosomes on linear DNA fragments and the comparison of their electrophoretic mobility, that CENP-A induces some positioning of its own and some unwrapping at the entry-exit relative to canonical nucleosomes on both 5 S DNA and the alpha-satellite sequence on which it is normally loaded. This steady-state unwrapping was quantified to 7(+/-2) bp by nucleosome reconstitutions on a series of DNA minicircles, followed by their relaxation with topoisomerase I. The unwrapping was found to ease nucleosome invasion by exonuclease III, to hinder the binding of a linker histone, and to promote the release of an H2A-H2B dimer by nucleosome assembly protein 1 (NAP-1). The (CENP-A-H4)2 tetramer was also more readily destabilized with heparin than the (H3-H4)2 tetramer, suggesting that CENP-A has evolved to confer its nucleosome a specific ability to disassemble. This dual relative instability is proposed to facilitate the progressive clearance of CENP-A nucleosomes that assemble promiscuously in euchromatin, especially as is seen following CENP-A transient over-expression.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Conformação de Ácido Nucleico , Nucleossomos , Conformação Proteica , Sequência de Aminoácidos , Animais , Autoantígenos/química , Autoantígenos/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Centromérica A , Galinhas , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/química , DNA/metabolismo , Dimerização , Exodesoxirribonucleases/metabolismo , Heparina/metabolismo , Histonas/metabolismo , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo , Nucleossomos/química , Nucleossomos/metabolismo , Alinhamento de Sequência
15.
Nat Struct Mol Biol ; 13(5): 444-50, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16622406

RESUMO

Magnetic tweezers were used to study the mechanical response under torsion of single nucleosome arrays reconstituted on tandem repeats of 5S positioning sequences. Regular arrays are extremely resilient and can reversibly accommodate a large amount of supercoiling without much change in length. This behavior is quantitatively described by a molecular model of the chromatin three-dimensional architecture. In this model, we assume the existence of a dynamic equilibrium between three conformations of the nucleosome, corresponding to different crossing statuses of the entry/exit DNAs (positive, null or negative, respectively). Torsional strain displaces that equilibrium, leading to an extensive reorganization of the fiber's architecture. The model explains a number of long-standing topological questions regarding DNA in chromatin and may provide the basis to better understand the dynamic binding of chromatin-associated proteins.Note: In the supplementary information initially published online to accompany this article, Supplementary Figure 2 was mistakenly replaced by Supplementary Equation 2. The error has been corrected online.


Assuntos
Cromatina/química , Cromatina/metabolismo , Materiais Biomiméticos/metabolismo , Cromatina/efeitos dos fármacos , DNA/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Cloreto de Sódio/farmacologia
16.
Biochemistry ; 44(7): 2529-35, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15709765

RESUMO

We have reported earlier the occurrence of a specific histone H2B variant in human testis and sperm. Here we have structurally characterized this protein, its association with the rest of the histone octamer, and its effects on the nucleosome structure. We show that a reconstituted octamer consisting of hTSH2B and a stoichiometric complement of histones H2A, H3, and H4 exhibits a lower stability compared to the reconstituted native counterpart consisting of H2B. In contrast, the hTSH2B containing octamers are able to form nucleosome core particles which are structurally and dynamically indistinguishable from those reconstituted with octamers consisting of only native histones. Furthermore, the presence of hTSH2B in the nucleosome does not affect its ability to bind to linker histones.


Assuntos
Histonas/química , Proteínas Nucleares/química , Nucleossomos/química , Testículo/química , Sequência de Aminoácidos , Animais , Galinhas , Cromatografia em Gel , Variação Genética , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ouriços-do-Mar , Testículo/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...