Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902926

RESUMO

Agro-industrial wastes such as wheat husk (WH) are renewable sources of organic and inorganic substances, including cellulose, lignin, and aluminosilicates, which can be transformed into advanced materials with high added value. The use of geopolymers is a strategy to take advantage of the inorganic substances by obtaining inorganic polymers, which have been used as additives, e.g., for cement and refractory brick products or ceramic precursors. In this research, the WH native to northern Mexico was used as a source to produce wheat husk ash (WHA) following its calcination at 1050 °C. In addition, geopolymers were synthesized from the WHA by varying the concentrations of the alkaline activator (NaOH) from 16 M to 30 M, namely Geo 16M, Geo 20M, Geo 25M, and Geo 30M. At the same time, a commercial microwave radiation process was employed as the curing source. Furthermore, the geopolymers synthesized with 16 M and 30 M of NaOH were studied for their thermal conductivity as a function of temperature, in particular at 25, 35, 60, and 90 °C. The chemical composition of the WHA, determined by ICP, revealed a SiO2 content close to 81%, which is similar to rice husk. The geopolymers were characterized using various techniques to determine their structure, mechanical properties, and thermal conductivity. The findings showed that the synthesized geopolymers with 16M and 30M of NaOH had significant mechanical properties and thermal conductivity, respectively, compared to the other synthesized materials. Finally, the thermal conductivity regarding the temperature revealed that Geo 30M presented significant performance, especially at 60 °C.

2.
Polymers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501479

RESUMO

Scientific research based on the self-assembly behavior of block copolymers (BCs) comprising charged-neutral segments has emerged as a novel strategy mainly looking for the optimization of efficiency in the generation and storage of electrical energy. The sulfonation reaction re- presents one of the most commonly employed methodologies by scientific investigations to reach the desired amphiphilic character, leading to enough ion concentration to modify and control the entire self-assembly behavior of the BCs. Recently, several works have studied and exploited these changes, inducing improvement on the mechanical properties, ionic conduction capabilities, colloidal solubility, interface activity, and stabilization of dispersed particles, among others. This review aims to present a description of recent works focused on obtaining amphiphilic block copolymers, specifically those that were synthesized by a living/controlled polymerization method and that have introduced the amphiphilic character by the sulfonation of one of the segments. Additionally, relevant works that have evidenced morphological and/or structural changes regarding the pristine BC as a result of the chemical modification are discussed. Finally, several emerging practical applications are analyzed to highlight the main drawbacks and challenges that should be addressed to overcome the development and understanding of these complex systems.

3.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365647

RESUMO

The structural modification of biopolymers is a current strategy to develop materials with biomedical applications. Silk fibroin is a natural fiber derived from a protein produced by the silkworm (Bombyx mori) with biocompatible characteristics and excellent mechanical properties. This research reports the structural modification of silk fibroin by incorporating polyaniline chain grafts through a one-pot process (esterification reaction/oxidative polymerization). The structural characterization was achieved by 1H-NMR and FT-IR. The morphology was studied by scanning electron microscopy and complemented with thermogravimetric analysis to understand the effect of the thermal stability at each step of the modification. Different fibroin silk (Fib): polyaniline (PAni) mass ratios were evaluated. From this evaluation, it was found that a Fib to PAni ratio of at least 1 to 0.5 is required to produce electroactive polyaniline, as observed by UV-vis and CV. Notably, all the fibroin-g-PAni systems present low cytotoxicity, making them promising systems for developing biocompatible electrochemical sensors.

4.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897666

RESUMO

In this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)-g-polyaniline)-b-poly(N-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated surfactant-free emulsion polymerization (block copolymer), and interfacial oxidative polymerization were applied to graft the PAni chains. NMR and FT-IR spectroscopies were performed to confirm the structural elucidation of the reaction pathways, while the thermal properties were analyzed by TGA and DSC. Notably, the BL PAni presents absorption throughout the visible region and up to the near-infrared, showing dedoping resistance at up to 80 °C and at a neutral pH. The absorption range of the BL PAni, block copolymer, and homopolymer were studied by UV-Vis spectroscopy in solid-state and dispersion/solution, highlighting BL PAni and poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonate)-b-poly(N-vinylcarbazole) (PAAMP-b-PVK) due to the π-stacking between the anilinium and carbazole groups. The cyclic voltammetry confirmed the persistence of electroactivity at a pH near 7.


Assuntos
Acrilamidas , Polímeros , Compostos de Anilina , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
5.
Polymers (Basel) ; 14(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35160621

RESUMO

Renewable polymers possess the potential to replace monomers from petrochemical sources. The design and development of polymeric materials from sustainable materials are a technological challenge. The main objectives of this study were to study the microstructure of copolymers based on itaconic acid (IA), di-n-butyl itaconate (DBI), and lauryl methacrylate (LMA); and to explore and to evaluate these copolymers as pressure-sensitive adhesives (PSA). The copolymer synthesis was carried out through batch emulsion radical polymerization, an environmentally friendly process. IA was used in a small fixed amount as a functional comonomer, and LMA was selected due to low glass transition temperature (Tg). The structure of synthesized copolymers was studied by FTIR, 1H-NMR, Soxhlet extraction, and molecular weight analyses by GPC. Furthermore, the viscoelastic and thermal properties of copolymer films were characterized by DMA, DSC, and TGA. The single Tg displayed by the poly(DBI-LMA-IA) terpolymers indicates that statistical random composition copolymers were obtained. Moreover, FTIR and NMR spectra confirm the chemical structure and composition. It was found that a cross-linked microstructure and higher molecular weight are observed with an increase of LMA in the feed led. The Tg and modulus (G') of the copolymers film can be tuned with the ratio of DBI:LMA providing a platform for a wide range of applications as a biobased alternative to produce waterborne PSA.

6.
Polymers (Basel) ; 13(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34301106

RESUMO

The development of anilinium 2-acrylamide-2-methyl-1-propanesulfonate (Ani-AMPS) monomer, confirmed by 1H NMR, 13C NMR, and FTIR, is systematically studied. Ani-AMPS contains two polymerizable functional groups, so it was submitted to selective polymerization either by free-radical or oxidative polymerization. Therefore, poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonic) [Poly(Ani-AMPS)] and polyaniline doped with 2-acrylamide-2-methyl-1-propanesulfonic acid [PAni-AMPS] can be obtained. First, the acrylamide polymer, poly(Ani-AMPS), favored the π-stacking of the anilinium group produced by the inter- and intra-molecular interactions and was studied utilizing 1H NMR, 13C NMR, FTIR, and UV-Vis-NIR. Furthermore, poly(Ani-AMPS) fluorescence shows quenching in the presence of Fe2+ and Fe3+ in the emission spectrum at 347 nm. In contrast, the typical behavior of polyaniline is observed in the cyclic voltammetry analysis for PAni-AMPS. The optical properties also show a significant change at pH 4.4. The PAni-AMPS structure was corroborated through FTIR, while the thermal properties and morphology were analyzed utilizing TGA, DSC (except PAni-AMPS), and FESEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...