Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Environ Manage ; 190: 197-207, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049089

RESUMO

This study aimed to evaluate the response of salt marshes to pulses of PO43--enriched water, with and without the presence of Phragmites australis. A one-year mesocosms experiment was performed in simulated soil profiles (fine-textured surface layers and sandy subsurface layers) from a coastal salt marsh of the Mar Menor lagoon under alternating flooding-drying conditions with eutrophic water, under low (1.95 mg L-1 P-PO43-) and high (19.5 mg L-1 P-PO43-) P load, and with the presence/absence of Phragmites. The PO43- concentrations in soil porewater and drainage water were regularly measured, and P accumulated in soils (including a fractionation procedure) and plants (roots, rhizomes, stems and leaves) were analyzed. The experimental mesocosms were highly effective in the removal of P from the eutrophic flooding water (>90% reduction of the P added to the system both in the soil pore water and drainage water), regardless of the nutrient load, the season of the year and the presence/absence of Phragmites. The soil was the main sink of the P added to the system, while Phragmites had a minor role in P removal. The biomass of Phragmites accumulated ∼27% of the P added with the flooding water in the treatment with water of low P load while ∼12% of P in that of high P load; the rhizomes were the organs that contributed the most (∼67-72% of the total P retained by the plants). Ca/Mg compounds were the main contributors to the retention of P in the soil compartment, especially in the fine-textured surface soil layers (∼34-53% of the total P in the soil was present in this fraction). Phragmites favored the retention of P onto metal oxides (∼12% increase of the P retained in the metal oxides fraction in the treatment with water of high P load). Hence, the use of constructed wetlands to ameliorate the negative impacts of P-enriched waters in the Mar Menor lagoon and similar areas is recommended. We propose the incorporation of fine-textured carbonated materials, with high content of Ca/Mg compounds, and the use of Phragmites to favor the retention of P by these systems.


Assuntos
Fósforo , Áreas Alagadas , Biomassa , Eutrofização , Inundações , Óxidos/química , Óxidos/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fósforo/análise , Fósforo/química , Fósforo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas , Caules de Planta/metabolismo , Poaceae/metabolismo , Rizoma/metabolismo , Estações do Ano , Solo/química , Espanha , Água/química
2.
J Environ Manage ; 128: 964-72, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23892281

RESUMO

Wetlands are highly effective systems in removing large amounts of N from waters, preventing eutrophication processes. However, when wetlands are polluted by metal-mine wastes their capacity to act as green filters may be diminished. The objective of this study was to evaluate the effect of liming and plants (Sarcocornia fruticosa and Phragmites australis) on the removal of NO3(-) from eutrophic water in slightly acidic, wetland soils polluted by metal-mine wastes. Simulated soil profiles were constructed and six treatments were assayed: (1) no liming + no plant, (2) no liming + S. fruticosa, (3) no liming + P. australis, (4) liming + no plant, (5) liming + S. fruticosa and (6) liming + P. australis. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions) and C2 (always under water). The eutrophic water used to flood the soil profiles was enriched in N and organic carbon (pH ~ 7.5, electrical conductivity ~ 11 dS m(-1), NO3(-) ~ 234 mg L(-1) and dissolved organic carbon ~ 106 mg L(-1)). The pH, Eh and concentrations of dissolved organic carbon (DOC), N-NO3(-) and N-NH4(+) were measured regularly for 18 weeks. Liming stimulated the growth of plants, especially for S. fruticosa (20-fold more plant biomass than without liming), increased the soil pH and favoured the decline of the Eh values, enhancing the removal of NO3(-) via denitrification. Of all the treatments assayed, liming + S. fruticosa was the only treatment that removed almost completely the high concentration of NO3(-) from the eutrophic flooding water, reaching ~1 mg L(-1) N-NO3(-) at the end of the experiment, at all depths. The higher content of DOC in the pore water of this treatment could explain this behaviour, since more labile carbon was available to the soil microorganisms in the rhizosphere, favouring NO3(-) removal through denitrification processes. However, the treatment liming + P. australis (2-fold more plant biomass that without liming) did not remove completely the high concentrations of NO3(-) from the eutrophic water, except in the C2 horizon - which was permanently under water. Hence, our results show that the effectiveness of liming, regarding the removal of NO3(-) from eutrophic flooding water in wetland soils polluted by metal-mine wastes, depends on the presence of plants, their growth and the production of organic compounds in the rhizospheric environment.


Assuntos
Compostos de Cálcio , Nitratos/isolamento & purificação , Óxidos , Solo , Áreas Alagadas , Amaranthaceae/crescimento & desenvolvimento , Amônia/análise , Biodegradação Ambiental , Carbono/análise , Poluição Ambiental , Eutrofização , Inundações , Concentração de Íons de Hidrogênio , Metais , Mineração , Nitratos/metabolismo , Poaceae/crescimento & desenvolvimento , Espanha
3.
J Environ Manage ; 116: 72-80, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23291403

RESUMO

The aim of this study was to identify the effectiveness of liming in combination with vegetation for the recovery of slightly acidic, saline soils of eutrophic wetlands affected by mine wastes, under fluctuating flooding conditions. Simulated soil profiles were constructed and four treatments were assayed under greenhouse conditions: control, only plant, only liming, and liming and plant. The plant species was the halophyte Sarcocornia fruticosa. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions), and C2 (always under water). The pH, Eh, salinity, and the concentrations of dissolved organic carbon and soluble metals were measured regularly for 18 weeks. Liming favoured the growth of S. fruticosa, an increase in pH and a fall in Eh. The amendment was effective for reducing Mn, Zn, and Cd in pore water of bare soils, but not Cu and Pb. In the treatment with liming and plant, the growth of S. fruticosa counteracted the effect of the amendment, strongly increasing the concentrations of metals in pore water and distributing them along the soil profile. Hence, the combined use of liming and plants may increase the risk of metals mobilisation.


Assuntos
Compostos de Cálcio , Poluição Ambiental/prevenção & controle , Metais/metabolismo , Mineração , Óxidos , Plantas/metabolismo , Poluentes do Solo/metabolismo , Áreas Alagadas , Resíduos Industriais/prevenção & controle , Metais/química , Poluentes do Solo/química
4.
Chemosphere ; 90(10): 2512-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159072

RESUMO

The aim of this study was to assess the effectiveness of combining liming and vegetation for the phytomanagement of strongly acidic, saline eutrophic wetlands polluted by mine wastes. Simulated soil profiles were constructed and four treatments were assayed: without liming+without plant, without liming+with plant, with liming+without plant and with liming+with plant. The plant species was the halophyte Sarcocornia fruticosa. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions) and C2 (always under water). The soluble Cd, Cu, Mn, Pb and Zn concentrations were measured regularly for 18 weeks and a sequential extraction procedure was applied at the end of the experiment. Liming was effective (between ∼70% and ∼100%) in reducing the soluble Zn, Cu and Pb. In contrast, soluble Mn and Cd increased with liming, especially in the treatment with liming+with plant, where the concentrations were 2-fold higher than in the non-limed treatments. The amendment increased the contents of Zn, Mn and Cd bound to potentially-mobilisable soil fractions at the expense of the most-environmentally-inert fractions. Hence, the combined use of liming and vegetation may increase the long-term environmental risk of metals solubilisation.


Assuntos
Amaranthaceae/metabolismo , Espectrometria de Massas , Metais/análise , Mineração , Poluentes do Solo/análise , Áreas Alagadas , Compostos de Cálcio/química , Substâncias Perigosas/análise , Substâncias Perigosas/metabolismo , Concentração de Íons de Hidrogênio , Íons/química , Metais/metabolismo , Óxidos/química , Poluentes do Solo/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
5.
J Hazard Mater ; 186(1): 805-13, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21146289

RESUMO

The aim of this study was to evaluate the combined effects of liming and behaviour of Sarcocornia fruticosa as a strategy of phytomanagement of metal polluted salt marsh soils. Soils were taken from two polluted salt marshes (one with fine texture and pH∼6.4 and the other one with sandy texture and pH∼3.1). A lime amendment derived from the marble industry was added to each soil at a rate of 20 g kg(-1), giving four treatments: neutral soil with/without liming and acidic soil with/without liming. Cuttings of S. fruticosa were planted in pots filled with these substrates and grown for 10 months. The pots were irrigated with eutrophicated water. As expected, lime amendment decreased the soluble metal concentrations. In both soils, liming favoured the growth of S. fruticosa and enhanced the capacity of the plants to phytostabilise metals in roots.


Assuntos
Amaranthaceae/química , Compostos de Cálcio , Resíduos Industriais , Mineração , Óxidos , Poluentes do Solo/isolamento & purificação , Água do Mar
6.
Environ Sci Pollut Res Int ; 17(3): 657-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19816728

RESUMO

BACKGROUND, AIM, AND SCOPE: Diffusive gradients in thin films (DGT) have been recognized as a suitable tool to assess in situ metal bioavailability in soils. Mine tailings have some singular characteristics such as high heavy-metal concentrations, low pH, or absence of water retention capacity that may compromise the correct application of this technique whose applicability is known to be pH dependent. The goal of this study was to determine the response of DGT devices in heavy-metal-polluted mine tailings with different pH. In addition some experiments were performed in order to determine the effect of acidic pH and dissolved ions on the binding properties of the chelating resin. MATERIALS AND METHODS: We tested DGT devices on three different mine tailings: acid pH 3, acid tailing limed to pH 5.5, and neutral pH 7.2. The tailings showed high metal concentrations, e.g., 7,000 mg kg(-1) Pb, 9,000 mg kg(-1) Zn, and 380 mg kg(-1) Cu. Diffusive and Chelex resin gels were prepared according to previously published methods. Two chelating resins and diffusive gels thicknesses (0.4 and 0.7 mm) were tested. Four DGT devices of each type were placed during 24 h in pots (one device per pot) containing 1 kg mine tailings in a climate chamber with humidity (50-90%) and controlled temperature conditions (night 16 degrees C and day 23 degrees C). Pots were irrigated with deionized water to field capacity, and then two different experiments were performed: (a) allowing free drainage and (b) maintaining the water saturation. In addition, we tested DGT devices in solutions at pH 3 with similar properties to the soil solution measured in the acid tailing. Eluted Zn, Cd, Pb, and Cu from the chelating resins were measured using inductively coupled plasma-optical emission spectrometer (ICP-OES; Vista-MPX Varian). RESULTS AND DISCUSSION: The metal concentrations taken up by the DGT devices were affected by the different pH values of the tailings. The highest metal concentrations measured with DGT (C (DGT)) were obtained in the pH 3 treatments (both saturated and free drainage). Significant differences for C (DGT) were observed between water-saturated and free drainage treatments in the acid pH 3 tailing. When limed pH 5.5 tailing and neutral pH 7 tailing were considered, these differences were lower and not significant. In pH 3 tailings low values for C (DGT)/C (soil solution) were obtained (<0.06), indicating that these soils have a low capacity to resupply depleted metals to the solution. The limed acid tailing and the neutral tailing showed values between 0.05 and 0.94 indicating a much more rapid resupply from the solid phase. Deployment under water-saturated conditions yielded much higher C (DGT) values than under free drainage, indicating the importance to adequately control the moisture content in these soils with poor water retention capacity. In solutions with pH 3 mimicking the soil solution composition of the tailings, a loss of the binding capacity of the resin of 50-60% and 60-80% for Zn in 0.7-mm DGT and 0.4-mm DGT devices, respectively, was observed. As a consequence, 0.7-mm DGT devices had better reliability to carry out in situ determinations in solutions with high metal concentrations and low pH. CONCLUSIONS: The use of DGT in mining soils can be a promising tool to study bioavailable metals concentrations in mine tailings but it has to be used carefully under acidic pH. Competition with other cations that are present at very high concentrations may hinder the accumulation of metals by the chelating resins, which should be tested under the conditions of the particular mine tailing.


Assuntos
Monitoramento Ambiental/instrumentação , Resíduos Industriais/análise , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento , Concentração de Íons de Hidrogênio , Solo/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...