Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6406-6423, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38742631

RESUMO

Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , Deinococcus , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Deinococcus/efeitos da radiação , Deinococcus/genética , Deinococcus/metabolismo , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Estresse Fisiológico , Raios Ultravioleta
2.
Nucleic Acids Res ; 50(13): 7680-7696, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801857

RESUMO

Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Šand further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.


Assuntos
Proteínas de Bactérias/química , Deinococcus , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Circular/metabolismo , Deinococcus/genética , Deinococcus/metabolismo
3.
Cells ; 10(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34685516

RESUMO

Numerous genes are overexpressed in the radioresistant bacterium Deinococcus radiodurans after exposure to radiation or prolonged desiccation. It was shown that the DdrO and IrrE proteins play a major role in regulating the expression of approximately twenty genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions. After exposure to genotoxic agents, the IrrE metalloprotease cleaves DdrO and relieves gene repression. At present, many questions remain, such as the number of genes regulated by DdrO. Here, we present the first ChIP-seq analysis performed at the genome level in Deinococcus species coupled with RNA-seq, which was achieved in the presence or not of DdrO. We also resequenced our laboratory stock strain of D. radiodurans R1 ATCC 13939 to obtain an accurate reference for read alignments and gene expression quantifications. We highlighted genes that are directly under the control of this transcriptional repressor and showed that the DdrO regulon in D. radiodurans includes numerous other genes than those previously described, including DNA and RNA metabolism proteins. These results thus pave the way to better understand the radioresistance pathways encoded by this bacterium and to compare the stress-induced responses mediated by this pair of proteins in diverse bacteria.


Assuntos
Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulon/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA/genética , Deinococcus/genética , Genômica , Regulon/fisiologia
4.
Extremophiles ; 25(4): 343-355, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052926

RESUMO

Here, we report the in vitro and in vivo characterization of the DdrD protein from the extraordinary stress-resistant bacterium, D. radiodurans. DdrD is one of the most highly induced proteins following cellular irradiation or desiccation. We confirm that DdrD belongs to the Radiation Desiccation Response (RDR) regulon protein family whose expression is regulated by the IrrE/DdrO proteins after DNA damage. We show that DdrD is a DNA binding protein that binds to single-stranded DNA In vitro, but not to duplex DNA unless it has a 5' single-stranded extension. In vivo, we observed no significant effect of the absence of DdrD on the survival of D. radiodurans cells after exposure to γ-rays or UV irradiation in different genetic contexts. However, genome reassembly is affected in a ∆ddrD mutant when cells recover from irradiation in the absence of nutrients. Thus, DdrD likely contributes to genome reconstitution after irradiation, but only under starvation conditions. Lastly, we show that the absence of the DdrD protein partially restores the frequency of plasmid transformation of a ∆ddrB mutant, suggesting that DdrD could also be involved in biological processes other than the response to DNA damage.


Assuntos
Deinococcus , Proteínas de Bactérias/genética , Dano ao DNA , Reparo do DNA , Deinococcus/genética , Plasmídeos
5.
J Proteomics ; 232: 104044, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33161166

RESUMO

Thermococcus gammatolerans EJ3 is an extremophile archaeon which was revealed as one of the most radioresistant organisms known on Earth, withstanding up to 30 kGy gamma-ray radiations. While its theoretical proteome is rather small, T. gammatolerans may enhance its toolbox by post-translational modification of its proteins. Here, we explored its extent of Nε-acetylation of lysines. For this, we immunopurified with two acetylated-lysine antibodies the acetylated peptides resulting from a proteolysis of soluble proteins with trypsin. The comparison of acetylated proteomes of two archaea highlights some common acetylation patterns but only 4 out of 26 orthologous proteins found to be acetylated in both species, are acetylated on the same lysine site. We evidenced that histone B is acetylated in T. gammatolerans at least at two different sites (K27 and K36), and a peptide common at the C-terminus of histones A and B is also acetylated. We verified that acetylation of histones is a common trait among Thermococcales after recording data on Thermococcus kodakaraensis histones and identifying three acetylated sites. This discovery reinforces the strong evolutionary link between Archaea and Eukaryotes and should be an incentive for further investigation on the extent and role of acetylation of histones in Archaea. SIGNIFICANCE: Acetylation is an important post-translational modification of proteins that has been extensively described in Eukaryotes, and more recently in Bacteria. Here, we report for the first time ever that histones in Archaea are also modified by acetylation after a systematic survey of acetylated peptides in Thermococcus gammatolerans. Structural models of histones A and B indicates that acetylation of the identified modified residues may play an important role in histone assembly and/or interaction with DNA. The in-depth protein acetylome landscape in T. gammatolerans includes at least 181 unique protein sequences, some of them being modified on numerous residues. Proteins involved in metabolic processes, information storage and processing mechanisms are over-represented categories in this dataset, highlighting the ancient role of this protein post-translational modification in primitive cells.


Assuntos
Proteoma , Thermococcus , Acetilação , Histonas , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Thermococcus/metabolismo
6.
Front Microbiol ; 11: 1253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625182

RESUMO

Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.

7.
Nucleic Acids Res ; 47(21): 11403-11417, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598697

RESUMO

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.


Assuntos
Deinococcus , Proteínas Repressoras/química , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Fatores de Transcrição/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dano ao DNA , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Fatores de Transcrição/genética
8.
J Bacteriol ; 200(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686138

RESUMO

The DNA damage response ddrI gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner. Interestingly, expression of the Escherichia coli CRP partially compensates for the absence of the DdrI protein. Microscopic observations of ΔddrI mutant cells revealed an increased proportion of two-tetrad and anucleated cells in the population compared to the wild-type strain, indicating that DdrI is crucial for the completion of cell division and/or chromosome segregation. We show that DdrI is also involved in the megaplasmid MP1 stability and in efficient plasmid transformation by facilitating the maintenance of the incoming plasmid in the cell. The in silico prediction of putative DdrI binding sites in the D. radiodurans genome suggests that hundreds of genes, belonging to several functional groups, may be regulated by DdrI. In addition, the DdrI protein absolutely requires cAMP for in vitro binding to specific target sequences, and it acts as a dimer. All these data underline the major role of DdrI in D. radiodurans physiology under normal and stress conditions by regulating, both directly and indirectly, a cohort of genes involved in various cellular processes, including central metabolism and specific responses to diverse harmful environments.IMPORTANCEDeinococcus radiodurans has been extensively studied to elucidate the molecular mechanisms responsible for its exceptional ability to withstand lethal effects of various DNA-damaging agents. A complex network, including efficient DNA repair, protein protection against oxidation, and diverse metabolic pathways, plays a crucial role for its radioresistance. The regulatory networks orchestrating these various pathways are still missing. Our data provide new insights into the crucial contribution of the transcription factor DdrI for the D. radiodurans ability to withstand harmful conditions, including UV radiation, mitomycin C treatment, heat shock, and oxidative stress. Finally, we highlight that DdrI is also required for accurate cell division, for maintenance of plasmid replicons, and for central metabolism processes responsible for the overall cell physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Deinococcus/genética , Deinococcus/efeitos da radiação , Raios Ultravioleta
9.
Cancer Nanotechnol ; 8(1): 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28757899

RESUMO

BACKGROUD: Small metallic nanoparticles are proposed as potential nanodrugs to optimize the performances of radiotherapy. This strategy, based on the enrichment of tumours with nanoparticles to amplify radiation effects in the tumour, aims at increasing the cytopathic effect in tumours while healthy tissue is preserved, an important challenge in radiotherapy. Another major cause of radiotherapy failure is the radioresistance of certain cancers. Surprisingly, the use of nanoparticles to overcome radioresistance has not, to the best of our knowledge, been extensively investigated. The mechanisms of radioresistance have been extensively studied using Deinococcus radiodurans, the most radioresistant organism ever reported, as a model. METHODS: In this work, we investigated the impact of ultra-small platinum nanoparticles (1.7 nm) on this organism, including uptake, toxicity, and effects on radiation responses. RESULTS: We showed that the nanoparticles penetrate D. radiodurans cells, despite the 150 nm cell wall thickness with a minimal inhibition concentration on the order of 4.8 mg L-1. We also found that the nanoparticles amplify gamma ray radiation effects by >40%. CONCLUSIONS: Finally, this study demonstrates the capacity of metallic nanoparticles to amplify radiation in radioresistant organisms, thus opening the perspective to use nanoparticles not only to improve tumour targeting but also to overcome radioresistance.

10.
PLoS One ; 12(5): e0177751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542368

RESUMO

The bacterium Deinococcus radiodurans possesses a set of Deinococcus-specific genes highly induced after DNA damage. Among them, ddrC (dr0003) was recently re-annotated, found to be in the inverse orientation and called A2G07_00380. Here, we report the first in vivo and in vitro characterization of the corrected DdrC protein to better understand its function in irradiated cells. In vivo, the ΔddrC null mutant is sensitive to high doses of UV radiation and the ddrC deletion significantly increases UV-sensitivity of ΔuvrA or ΔuvsE mutant strains. We show that the expression of the DdrC protein is induced after γ-irradiation and is under the control of the regulators, DdrO and IrrE. DdrC is rapidly recruited into the nucleoid of the irradiated cells. In vitro, we show that DdrC is able to bind single- and double-stranded DNA with a preference for the single-stranded DNA but without sequence or shape specificity and protects DNA from various nuclease attacks. DdrC also condenses DNA and promotes circularization of linear DNA. Finally, we show that the purified protein exhibits a DNA strand annealing activity. Altogether, our results suggest that DdrC is a new DNA binding protein with pleiotropic activities. It might maintain the damaged DNA fragments end to end, thus limiting their dispersion and extensive degradation after exposure to ionizing radiation. DdrC might also be an accessory protein that participates in a single strand annealing pathway whose importance in DNA repair becomes apparent when DNA is heavily damaged.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/química , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Deinococcus/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Deleção de Genes , Plasmídeos/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Raios Ultravioleta/efeitos adversos
11.
Front Microbiol ; 7: 1901, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965636

RESUMO

Non-homologous end-joining (NHEJ) is a double strand break (DSB) repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the "core" NHEJ gene set constituted of conserved loci and the "variable" NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC23877, not only the deletion of "core" genes but also that of "variable" genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.

12.
Chem Res Toxicol ; 29(11): 1796-1809, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27676238

RESUMO

The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2'-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry indicated that both have a ß-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-ß-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-ß-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Arqueal/química , Tolerância a Radiação , Thermococcus/genética , Oxirredução , Proteômica , Transcriptoma
13.
PLoS One ; 10(4): e0124358, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884619

RESUMO

Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.


Assuntos
Deinococcus/genética , Genes Bacterianos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Dano ao DNA , Reparo do DNA/genética , Elementos de DNA Transponíveis , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/efeitos da radiação , Deinococcus/efeitos dos fármacos , Deinococcus/efeitos da radiação , Fosfatos de Dinucleosídeos/fisiologia , Raios gama , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Biblioteca Gênica , Redes Reguladoras de Genes , Teste de Complementação Genética , Peróxido de Hidrogênio/farmacologia , Mitomicina/farmacologia , Mutagênese Insercional , Mutação , Fases de Leitura Aberta/genética , Estresse Oxidativo , Tolerância a Radiação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Transposases/genética , Raios Ultravioleta
14.
Proteomics ; 15(1): 114-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359407

RESUMO

ORFans are hypothetical proteins lacking any significant sequence similarity with other proteins. Here, we highlighted by quantitative proteomics the TGAM_1934 ORFan from the hyperradioresistant Thermococcus gammatolerans archaeon as one of the most abundant hypothetical proteins. This protein has been selected as a priority target for structure determination on the basis of its abundance in three cellular conditions. Its solution structure has been determined using multidimensional heteronuclear NMR spectroscopy. TGAM_1934 displays an original fold, although sharing some similarities with the 3D structure of the bacterial ortholog of frataxin, CyaY, a protein conserved in bacteria and eukaryotes and involved in iron-sulfur cluster biogenesis. These results highlight the potential of structural proteomics in prioritizing ORFan targets for structure determination based on quantitative proteomics data. The proteomic data and structure coordinates have been deposited to the ProteomeXchange with identifier PXD000402 (http://proteomecentral.proteomexchange.org/dataset/PXD000402) and Protein Data Bank under the accession number 2mcf, respectively.


Assuntos
Proteínas Arqueais/química , Thermococcus/química , Sequência de Aminoácidos , Proteínas de Ligação ao Ferro/química , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteômica , Frataxina
15.
J Virol ; 88(2): 1162-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198424

RESUMO

Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/ultraestrutura , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Escherichia coli/virologia , Microscopia Eletrônica , Dados de Sequência Molecular , Alinhamento de Sequência , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
16.
PLoS One ; 7(7): e41935, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848664

RESUMO

Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd), cobalt (Co) and zinc (Zn), a weaker tolerance to nickel (Ni), copper (Cu) and arsenate (AsO(4)) and that cells exposed to 1 mM Cd exhibit a cellular Cd concentration of 67 µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100 µM) and a toxic (1 mM) Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1 mM Cd basically promote: 1) the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2) the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3) the induction of membrane-bound hydrogenase (Mbh) and membrane-bound hydrogenlyase (Mhy2) subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, γ-rays), and showed that the Cd transcriptional pattern is comparable to other metal stress transcriptional responses (Cd, Zn, Ni) but not to a general stress response.


Assuntos
Cádmio/farmacologia , Genoma Arqueal/genética , Thermococcus/efeitos dos fármacos , Thermococcus/genética , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Resistência a Medicamentos/genética , Homeostase/efeitos dos fármacos , Homeostase/genética , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Thermococcus/enzimologia , Thermococcus/fisiologia
17.
Genome Biol ; 10(6): R70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19558674

RESUMO

BACKGROUND: Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis. RESULTS: T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis. CONCLUSIONS: This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.


Assuntos
Genoma Arqueal/genética , Proteômica , Tolerância a Radiação/genética , Thermococcus/genética , Proteínas Arqueais/metabolismo , Transporte Biológico/efeitos da radiação , Membrana Celular/enzimologia , Membrana Celular/efeitos da radiação , Cromossomos/metabolismo , Códon de Iniciação/genética , Reparo do DNA/efeitos da radiação , Elementos de DNA Transponíveis/genética , Raios gama , Hidrogenase/metabolismo , Espectrometria de Massas , Viabilidade Microbiana/efeitos da radiação , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteoma/genética , Tolerância a Radiação/efeitos da radiação , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Thermococcus/crescimento & desenvolvimento , Thermococcus/metabolismo , Thermococcus/virologia
18.
Extremophiles ; 13(2): 333-43, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19137239

RESUMO

The recently discovered hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans is of great interest to compare and contrast the impact of its physiology on radioresistance and its ability to repair damaged chromosomes after exposure to gamma irradiation with radioresistant bacteria. We showed that, in contrast to other organisms, cell survival was not modified by the cellular growth phase under optimal growth conditions but nutrient-limited conditions did affect the T. gammatolerans radioresistance. We determined the first kinetics of damaged DNA recovery in an archaeon after exposure to massive doses of gamma irradiation and compared the efficiency of chromosomal DNA repair according to the cellular growth phase, nutrient availability and culture conditions. Chromosomal DNA repair kinetics showed that stationary phase cells reconstitute disrupted chromosomes more rapidly than exponential phase cells. Our data also revealed that this radioresistant archaeon was proficient to reconstitute shattered chromosomes either slowly or rapidly without any loss of viability. These results suggest that rapid DNA repair is not required for the extreme radioresistance of T. gammatolerans.


Assuntos
Raios gama , Thermococcus/genética , Thermococcus/efeitos da radiação , Archaea , Cromossomos/ultraestrutura , Dano ao DNA , Reparo do DNA , DNA Arqueal/genética , DNA Arqueal/efeitos da radiação , Relação Dose-Resposta à Radiação , Cinética , Tolerância a Radiação/genética , Radiação Ionizante , Fatores de Tempo
19.
Extremophiles ; 9(4): 289-96, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15947866

RESUMO

The surface sands of the Sahara Desert are exposed to extremes of ultraviolet light irradiation, desiccation and temperature variation. Nonetheless, the presence of bacteria has recently been demonstrated in this environment by cultivation methods and by 16S rDNA analyses from total DNA isolated from surface sands. To discern the presence of bacteriophages in this harsh environment, we searched for extracellular phages and intracellularly located phages present as prophages or within pseudolysogens. Mild sonication of the sand, in different liquid culture media, incubated with and without Mitomycin-C, was followed by differential centrifugation to enrich for dsDNA phages. The resulting preparations, examined by electron microscopy, revealed the presence of virus-like particles with a diversity of morphotypes representative of all three major double-stranded DNA bacteriophage families (Myoviridae, Siphoviridae and Podoviridae). Moreover, pulsed-field gel electrophoresis of DNA, extracted from the enriched bacteriophage preparations, revealed the presence of distinct bands suggesting the presence of putative dsDNA phage genomes ranging in size from 45 kb to 270 kb. Characterization of the bacteriophages present in the surface sands of the Sahara Desert extends the range of environments from which bacteriophages can be isolated, and provides an important point of departure for the study of phages in extreme terrestrial environments.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Clima Desértico , Genoma Viral , Dióxido de Silício , África do Norte , Bacteriófagos/classificação , Bacteriófagos/ultraestrutura , DNA Viral/genética , DNA Viral/isolamento & purificação , Microscopia Eletrônica , Sonicação
20.
Genome Biol ; 6(5): R42, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15892870

RESUMO

BACKGROUND: Cultivable archaeal species are assigned to two phyla -- the Crenarchaeota and the Euryarchaeota -- by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis. The recently described hyperthermophile Nanoarchaeum equitans, harboring the smallest cellular genome ever sequenced (480 kb), has been suggested as the representative of a new phylum -- the Nanoarchaeota -- that would have diverged before the Crenarchaeota/Euryarchaeota split. Confirming the phylogenetic position of N. equitans is thus crucial for deciphering the history of the archaeal domain. RESULTS: We tested the placement of N. equitans in the archaeal phylogeny using a large dataset of concatenated ribosomal proteins from 25 archaeal genomes. We indicate that the placement of N. equitans in archaeal phylogenies on the basis of ribosomal protein concatenation may be strongly biased by the coupled effect of its above-average evolutionary rate and lateral gene transfers. Indeed, we show that different subsets of ribosomal proteins harbor a conflicting phylogenetic signal for the placement of N. equitans. A BLASTP-based survey of the phylogenetic pattern of all open reading frames (ORFs) in the genome of N. equitans revealed a surprisingly high fraction of close hits with Euryarchaeota, notably Thermococcales. Strikingly, a specific affinity of N. equitans and Thermococcales was strongly supported by phylogenies based on a subset of ribosomal proteins, and on a number of unrelated molecular markers. CONCLUSION: We suggest that N. equitans may more probably be the representative of a fast-evolving euryarchaeal lineage (possibly related to Thermococcales) than the representative of a novel and early diverging archaeal phylum.


Assuntos
Euryarchaeota/classificação , Genoma Arqueal , Filogenia , Crenarchaeota/classificação , Crenarchaeota/genética , Euryarchaeota/genética , Evolução Molecular , Genes Arqueais , Nanoarchaeota/classificação , Nanoarchaeota/genética , Proteômica , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/genética , Thermococcales/classificação , Thermococcales/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...