Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Int J Biol Macromol ; : 133186, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885858

RESUMO

Ligand-receptor recognition serves as the fundamental driving force for active targeting, yet it is still constrained by off-target effects. Herein, we demonstrate that circumventing or blocking the mononuclear phagocyte system (MPS) are both viable strategies to address off-target effects. Naturally derived lignin nanoparticles (LNPs) show great potential to block MPS due to its good stability, low toxicity, and degradability. We further demonstrate the impact of LNPs dosage on in vivo tumor targeting and antitumor efficacy. Our results show that a high dose of LNPs (300 mg/kg) leads to significant accumulation at the tumor site for a duration of 14 days after intravenous administration. In contrast, the low-dose counterparts (e.g., 50, 150 mg/kg) result in almost all LNPs accumulating in the liver. This discovery indicates that the liver is the primary site of LNP capture, leaving only the surplus LNPs the chance to reach the tumor. In addition, although cell membrane-engineered LNPs can rapidly penetrate tumors, they are still prone to capture by the liver during subsequent circulation in the bloodstream. Excitingly, comparable therapeutic efficacy is obtained for the above two strategies. Our findings may offer valuable insights into the targeted delivery of drugs for disease treatment.

2.
Eur J Pharmacol ; 975: 176668, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788791

RESUMO

Tartaric acid (TA) has been shown beneficial effects on blood pressure and lipid levels. However, its effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. This study aimed to investigate the role of TA in experimental NAFLD. Mice were fed a Western diet for 8 weeks, followed by administration of TA or a vehicle for an additional 12 weeks while continuing on the Western diet. Blood biochemistry including transaminases and glucose tolerance test and liver tissue RNA sequencing (RNA-seq), lipid content, and histology were investigated. The HepG2 cell line was used to explore the mechanism by which TA regulates lipid metabolism. We found that TA significantly improved weight gain, insulin resistance, hepatic steatosis, inflammation and fibrosis in Western diet-fed mice. By comparing gene expression differences, we found that TA affects pathways related to lipid metabolism, inflammatory response, and fibrosis. Furthermore, TA effectively reduced oleic acid-induced lipid accumulation in HepG2 cells and downregulated the genes associated with fatty acid synthesis, which were enriched in the AMP-activated protein kinase (AMPK) signaling pathway. TA also enhanced the phosphorylation of AMPK which could be reverted by the AMPK inhibitor Compound C in HepG2 cells. Our study suggests that TA improves experimental NAFLD by activating the AMPK signaling pathway. These findings indicate that TA may serve as a potential therapy for the human NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Tartaratos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Células Hep G2 , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Tartaratos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças
3.
Per Med ; 21(2): 89-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501284

RESUMO

Aim: Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. Materials & methods: RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals. Results: A total of 1555, 3997 and 5276 differentially expressed mRNAs existed between the following combinations: SONFH versus non-SONFH, SONFH versus healthy subjects and non-SONFH versus healthy subjects. Increased ISM1 expression might contribute to a high risk of SONFH through antiangiogenesis. Decreased FOLR3 expression might affect the metabolism of homocysteine, leading to avascular necrosis of the femoral head. KCNJ2, which plays a pivotal role in regulating bone development, was also deregulated. Conclusion: ISM1, FOLR3 and KCNJ2 might be related to the occurrence of SONFH.


[Box: see text].


Assuntos
Necrose da Cabeça do Fêmur , Perfilação da Expressão Gênica , Humanos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , Masculino , Feminino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Adulto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Glucocorticoides/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estudos de Casos e Controles , Cabeça do Fêmur/patologia , Osteonecrose/induzido quimicamente , Osteonecrose/genética , Esteroides/efeitos adversos
4.
Fitoterapia ; 175: 105924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537886

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Autofagia , Caenorhabditis elegans , Dendrobium , Modelos Animais de Doenças , Extratos Vegetais , Proteostase , Animais , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Dendrobium/química , Proteostase/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Proteínas tau/metabolismo , Fenóis/farmacologia , Fenóis/isolamento & purificação , Flavanonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
5.
Adv Healthc Mater ; 13(11): e2303779, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38288884

RESUMO

Nanomaterials that generate reactive oxygen species (ROS) upon light irradiation have significant applications in various fields, including photodynamic therapy (PDT) that is widely recognized as a highly momentous strategy for the eradication of cancer cells. However, the ROS production rate of photosensitizers, as well as the tumor hypoxia environment, are two major challenges that restrict the widespread application of PDT. In this study, a cancer-thylakoid hybrid membrane-camouflaged thulium oxide nanoparticles (Tm2O3) for tumor-homing phototherapy through dual-stage-light-guided ROS generation and oxygen self-supply is developed. Tm2O3 as a type II photosensitizer are viable for NIR-stimulated ROS generation due to the unique energy levels, large absorption cross section, and long lifetime of the 3H4 state of Tm ions. The thylakoid membrane (TK) plays a catalase-like role in converting hydrogen peroxide into oxygen and also acts as a natural photosensitizer that can generate lethal ROS through electron transfer when exposed to light. In addition, fluorescence dye DiR is embedded in the hybrid membrane for in vivo tracing as well as photothermal therapy. Results show that tumors in Tm2O3@TK-M/DiR group are effectively ablated following dual-stage-light irradiation, highlighting the promising potential of rare-earth element-based type II photosensitizers in various applications.


Assuntos
Nanopartículas , Oxigênio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Túlio , Animais , Túlio/química , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Humanos , Oxigênio/química , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Fotoquimioterapia/métodos , Óxidos/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Fototerapia/métodos
6.
J Assist Reprod Genet ; 41(2): 363-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079076

RESUMO

OBJECTIVE: In vitro fertilization-embryo transfer (IVF-ET) is a widely used treatment for infertility, with oocyte maturation and quality having a significant impact on oocyte fertilization, embryo development, and fetal growth. Mitochondrial transcription factor A (TFAM) is essential for maintaining the mitochondrial oxidative respiratory chain and supplying energy for oocyte development, fertilization, and embryonic development. In this study, we aimed to examine TFAM expression in women undergoing IVF-ET and assess its impact on the IVF outcomes. METHODS: We recruited 85 women who underwent IVF-ET treatment for infertility. On the date of egg collection, granulosa cells were extracted from the clear follicular fluid of the first mature egg using ultrasound-guided needle aspiration. The collected granulosa cells served three purposes: (1) detecting TFAM gene expression in granulosa cells via immunocytochemistry, (2) determining TFAM mRNA expression using reverse transcription-PCR (RT-PCR), and (3) measuring TFAM protein expression through western blotting. RESULT: Based on the results, we found that TFAM was localized and expressed in the cytoplasm of granulosa cells, whereas no expression was detected in the nucleus. Granulosa cells exhibited a linear correlation between TFAM mRNA and TFAM protein expression. The study participants were divided into three groups using the ternary method based on relative TFAM mRNA expression thresholds of 33% and 76%: the low-expression group (n = 30), the moderate-expression group (n = 27), and the high-expression group (n = 28). When compared to the other two groups, the moderate expression group exhibited a significantly higher egg utilization rate, 2 pronucleus rate, fertilization rate, and clinical pregnancy rate (P < 0.05). CONCLUSION: TFAM was detected in the cytoplasm of human ovarian granulosa cells. Women with moderate TFAM expression demonstrate enhanced outcomes in IVF.


Assuntos
Proteínas de Ligação a DNA , Fertilização in vitro , Infertilidade , Proteínas Mitocondriais , Fatores de Transcrição , Gravidez , Humanos , Feminino , Células da Granulosa/metabolismo , Infertilidade/terapia , Oócitos/metabolismo , RNA Mensageiro/metabolismo
7.
Heliyon ; 9(11): e21011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920504

RESUMO

Aging is associated with gradual changes in liver structure, altered metabolites and other physiological/pathological functions in hepatic cells. However, its characterized phenotypes based on altered metabolites and the underlying biological mechanism are unclear. Advancements in high-throughput omics technology provide new opportunities to understand the pathological process of aging. Here, in our present study, both metabolomics and phosphoproteomics were applied to identify the altered metabolites and phosphorylated proteins in liver of young (the WTY group) and naturally aged (the WTA group) mice, to find novel biomarkers and pathways, and uncover the biological mechanism. Analysis showed that the body weights, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased in the WTA group. The grips decreased with age, while the triglyceride (TG) and cholesterol (TC) did not change significantly. The increase of fibrosis, accumulation of inflammatory cells, hepatocytes degeneration, the deposition of lipid droplets and glycogen, the damaged mitochondria, and deduction of endoplasmic reticulum were observed in the aging liver under optical and electron microscopes. In addition, a network of metabolites and phosphorylated proteomes of the aging liver was established. Metabolomics detected 970 metabolites in the positive ion mode and 778 metabolites in the negative ion mode. A total of 150 pathways were pooled. Phosphoproteomics identified 2618 proteins which contained 16621 phosphosites. A total of 164 pathways were detected. 65 common pathways were detected in two omics. Phosphorylated protein heat shock protein HSP 90-alpha (HSP90A) and v-raf murine viral oncogene homolog B1(BRAF), related to cancer pathway, were significantly upregulated in aged mice liver. Western blot verified that protein expression of MEK and ERK, downstream of BRAF pathway were elevated in the liver of aging mice. However, the protein expression of BRAF was not a significant difference. Overall, these findings revealed a close link between aging and cancer and contributed to our understanding of the multi-omics changes in natural aging.

8.
Ann Clin Lab Sci ; 53(4): 619-629, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37625837

RESUMO

OBJECTIVE: To investigate the role of the lncRNA MEG3 (MEG3) in opposing the biochemical processes thought to be involved in the development of atherosclerosis (AS). METHODS: Thirty patients with AS and thirty healthy control subjects were enrolled in this study. The expression of MEG3, miR-200b-3p and ABCA1 was analyzed by RT-qPCR in the individuals and the macrophages-derived foam cells. Lipid accumulation was detected by oil red O staining. Cholesterol efflux was measured by ELISA assay in the foam cells. Expression of miR-200b-3p was identified by sequencing. Targeting relationships were determined by dual luciferase assay between MEG3 and miR-200b-3p, miR-200b-3p and ABCA1. RESULTS: In the patients with AS, MEG3 and ABCA1 expression were decreased and miR-200b-3p expression was upregulated. Foam cells transfected with an expression vector (pcDNA3.1) containing MEG3 (pcDNA3.1-MEG3) induced decrease of lipid accumulation and increase of cholesterol efflux compared to cells transfected with control plasmid alone. Foam cells transfected by pcDNA3.1-MEG3 also showed decreased miR-200b-3p and increased ABCA1 expression. Interestingly, co-expression of miR-200b-3p partially prevented these effects of MEG3 expression. CONCLUSION: Expression of MEG3 is downregulated in the patients with AS and foam cells. Overexpressed MEG3 may act as an anti-atherosclerotic factor by reducing lipid accumulation and accelerating cholesterol efflux through the miR-200b-3p/ABCA1 axis.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Aterosclerose/genética , Bioensaio , Colesterol , Lipídeos , MicroRNAs/genética
9.
RSC Adv ; 13(19): 13169-13176, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124006

RESUMO

In situ CuI-mediated cyclization methodology helped yield benzimidazoles with different substitution manner, such as 1,2-diarylbenzimidazoles (4 and 5) and 1-arylbenzimidazoles (6-15). The result of structure-activity relationship (SAR) study confirmed the significance of the 5,6,7-trimethoxybenzimidazole moiety, and the representative derivatives (8-10) exhibited marked antiproliferative activity against A549, HCT-116, and PC-3 cells; in addition, they are able to inhibit the polymerization of tubulin. Among them, compound 10 inhibited the growth of A549, HCT-116, and PC-3 cells with a mean IC50 value of 0.07 µM, and its IC50 value of tubulin polymerization is 0.26 µM.

10.
RSC Adv ; 13(22): 14878, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37200692

RESUMO

[This corrects the article DOI: 10.1039/D3RA01927F.].

11.
J Mol Model ; 29(5): 141, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059848

RESUMO

CONTEXT: Leukaemia has become a serious threat to human health. Although tyrosine kinase inhibitors (TKIs) have been developed as targets for the remedy of leukaemia, drug resistance occurs. Research demonstrated that the simultaneous targeting of sphingosine kinase 1 (Sphk1) and Sirtuin 1 (Sirt1) can downregulate myeloid cell leukaemia-1 (MCL-1), overcome the resistance of tyrosine kinase inhibitors, and play a synergistic inhibitory impact on leukaemia treatment. METHODS: In this study, virtual screening of 7.06 million small molecules was done by sphingosine kinase 1 and Sirtuin 1 pharmacophore models using Schrödinger version 2019; after that, ADME and Toxicity molecule properties were predicted using Discovery Studio. Molecular docking using Schrödinger selected five molecules, which have the best binding affinity with sphingosine kinase 1 and Sirtuin 1. The five molecules and reference inhibitors were constructed with a total of 12 systems with GROMACS that carried out 100 ns molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. Due to compound 3 has the lowest binding energy, its structure was modified. A series of compounds docked with sphingosine kinase 1 and Sirtuin 1, respectively. Among them, QST-LC03, QST-LD05, QST-LE03, and QST-LE04 have the better binding affinity than reference inhibitors. Moreover, the SwissADME and PASS platforms predict that 1, 3, QST-LC03, and QST-LE04 have further study value.


Assuntos
Leucemia , Sirtuína 1 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
12.
Cell Discov ; 9(1): 20, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810288

RESUMO

Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has shown durable clinical benefits in lung cancer. However, many patients respond poorly to ICB treatment, underscoring an incomplete understanding of PD-L1 regulation and therapy resistance. Here, we find that MTSS1 is downregulated in lung adenocarcinoma, leading to PD-L1 upregulation, impairment of CD8+ lymphocyte function, and enhanced tumor progression. MTSS1 downregulation correlates with improved ICB efficacy in patients. Mechanistically, MTSS1 interacts with the E3 ligase AIP4 for PD-L1 monoubiquitination at Lysine 263, leading to PD-L1 endocytic sorting and lysosomal degradation. In addition, EGFR-KRAS signaling in lung adenocarcinoma suppresses MTSS1 and upregulates PD-L1. More importantly, combining AIP4-targeting via the clinical antidepressant drug clomipramine and ICB treatment improves therapy response and effectively suppresses the growth of ICB-resistant tumors in immunocompetent mice and humanized mice. Overall, our study discovers an MTSS1-AIP4 axis for PD-L1 monoubiquitination and reveals a potential combinatory therapy with antidepressants and ICB.

13.
Mol Cell Proteomics ; 22(2): 100494, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621768

RESUMO

AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid ß-oxidation, especially ß-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine ß-hydroxybutyrylation (Kbhb) is a ß-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.


Assuntos
Ácido 3-Hidroxibutírico , Proteínas Quinases Ativadas por AMP , Miocárdio , Animais , Humanos , Camundongos , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Proteômica , Espectrometria de Massas em Tandem
14.
Sci China Life Sci ; 66(3): 516-527, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515861

RESUMO

Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death characterized by reactive oxygen species (ROS) generation and lipid peroxidation. Here, we report a novel iron-dependent form of ferroptosis induced by labile iron and investigate the mechanism underlying this process. We find that labile iron-induced ferroptosis is distinct from canonical ferroptosis and is linked to the mitochondrial pathway. Specifically, the mitochondrial calcium uniporter mediates the ferroptosis induced by labile iron. Interestingly, cells undergoing labile iron-induced ferroptosis exhibit cytoplasmic features of oncosis and nuclear features of apoptosis. Furthermore, labile iron-induced ferroptosis involves a unique set of genes. Finally, labile iron-induced ferroptosis was observed in liver subjected to acute iron overload in vivo. Our study reveals a novel form of ferroptosis that may be implicated in diseases caused by acute injury.


Assuntos
Ferroptose , Ferro , Ferro/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos
15.
Biochem Biophys Res Commun ; 641: 192-199, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36535078

RESUMO

Activation of hepatic stellate cells (HSCs) is the main course of liver fibrosis which is positively correlated with adverse clinical outcomes in non-alcoholic steatohepatitis (NASH). Diethyldithiocarbamate (DDC) attenuates NASH related liver fibrosis in mice, but its underlying mechanisms remains unclear. In this study, the data showed that DDC inhibited the activation of HSCs in high fat choline-deficient, L-amino acid-defined (CDAA) diet induced NASH. Double Immunofluorescence analysis showed that the baseline expression of peroxisome proliferator-activated receptor α (PPARα) is high in HSCs in normal mouse liver and notably decreases in the NASH liver, indicating that PPARα might be associated with the activation of HSCs. While, DDC upregulated PPARα in HSCs in the NASH liver. Mixture of free fatty acid was used to induce steatosis of hepatocytes. Human HSCs (LX-2 cells) were activated after co-cultured with steatotic hepatocytes, and DDC inhibited the activation of LX-2 cells. Meanwhile, DDC upregulated PPARα and FABP1, and promoted the accumulation of LDs in LX-2 cells. PPARα small interfering RNA blocked these effect of DDC. These findings suggest that PPARα is associated with the activation of HSCs in the context of NASH. DDC improves NASH related fibrosis through inhibiting the activation of HSCs via PPARα/FABP1.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Estreladas do Fígado/metabolismo , PPAR alfa/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
16.
Hepatol Int ; 17(3): 636-647, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36512269

RESUMO

BACKGROUND AND AIMS: Liver iron loading can induce hepatic expression of hepcidin and regulate iron metabolism. However, the mechanism by which hepatocyte senses iron loading and further regulates iron metabolism remains unclear. Intracellular labile iron is nonferritin-bound and redox active; it is transitory, and it serves as a crossroads of cellular iron metabolism, the effect of intracellular labile iron in iron metabolism regulation is particularly poorly understood. METHODS: An intracellular labile iron overload cell model was established using ferric ammonium citrate (FAC) and the lipophilic iron chelator 8-hydroxyquinoline (8HQ/FAC). RNA-Seq was performed to screen the genes that were highly expressed exclusively in 8HQ/FAC-treated HepG2 cells. High-iron-diet mice model and Hfe knockout hemochromatosis mice were used to investigate the importance of tumor necrosis factor α (TNFα) in iron metabolism. RESULTS: Intracellular labile iron in hepatocytes had a dual function in iron metabolism: It induced hepatocytes to express hepcidin via endoplasmic reticulum stress-induced transcription factors, and it stimulated expression of bone morphogenic protein 6 (BMP6, regulator of iron metabolism) in liver sinusoidal endothelial cells (LSECs) via promoting the secretion of TNFα by the hepatocytes. Blockade of TNFα dysregulated iron metabolism during iron overload. Furthermore, administration of TNFα could reduce iron burden in Hfe knockout hemochromatosis mice. CONCLUSIONS: Our findings reveal the importance of intracellular labile iron in iron metabolism, and propose that TNFα might be a novel therapeutic target for HFE-associated hemochromatosis.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Camundongos , Animais , Ferro/metabolismo , Ferro/farmacologia , Hepcidinas/metabolismo , Hepcidinas/farmacologia , Hemocromatose/genética , Células Endoteliais/patologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Hemocromatose , Fígado/patologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Hepatócitos , Camundongos Knockout , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/farmacologia
17.
Biochem Biophys Res Commun ; 638: 23-27, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436338

RESUMO

Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and the effectiveness of current therapies for them is limited. TNBC lacks effective therapies and HER2-positive cancer is often resistant to HER2-targeted drugs after an initial response. The recent studies have demonstrated that the combination of JAK2 inhibitors and SMO inhibitors can effectively inhibit the growth and metastasis of TNBC and HER2-positive drug resistant breast cancer cells. In this study, deep reinforcement learning was used to learn the characteristics of existing small molecule inhibitors of JAK2 and SMO, and to generate a novel library of small molecule compounds that may be able to inhibit both JAK2 and SMO. Subsequently, the molecule library was screened by molecular docking and a total of 7 compounds were selected out as dual inhibitors of JAK2 and SMO. Molecular dynamics simulations and binding free energies showed that the top three compounds stably bound to both JAK2 and SMO proteins. The binding free energies and hydrogen bond occupancy of key amino acids indicate that A8976 and A10625 has good properties and could be a potential dual-target inhibitor of JAK2 and SMO.


Assuntos
Inibidores de Janus Quinases , Neoplasias de Mama Triplo Negativas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias de Mama Triplo Negativas/patologia , Receptor Smoothened , Janus Quinase 2/metabolismo
18.
Arch Biochem Biophys ; 731: 109430, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36326546

RESUMO

Diabetic cardiovascular complication is a common systemic disease with high morbidity and mortality worldwide. We hypothesise that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exos) can rescue these disorders and alleviate vascular remodeling in diabetes. Morphological, non-targeted metabolomics and 4D label-free proteomics techniques were used to analyze the aortas of db/m mice as normal control group (NCA), saline treated db/db mice (DMA), and hUCMSCs-exos treated db/db mice (DMTA), and to clarify the molecular mechanism of the protection of hUCMSCs-exos in vascular remodeling from a new point of view. The results showed that 74 metabolites were changed significantly in diabetic aortas, of which 15 were almost restored by hUCMSCs-exos. In proteomics, 30 potential targets such as Stromal cell-derived factor 2-like protein 1, Leukemia inhibitory factor receptor, Peroxisomal membrane protein and E3 ubiquitin-protein ligase MYCBP2 were detected. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based analysis showed that Central carbon metabolism in cancer and Galactose metabolism pathway were up-regulated to near normal by hUCMSCs-exos in metabolomics, with janus associated kinase-signal transducer and activator of transcription (JAK-STAT) pathway displayed in proteomics. According to bioinformatics and integrated analysis, these targeted molecules of hUCMSCs-exos to attenuate the vascular remodeling were mainly associated with regulation of energy metabolism, oxidative stress, inflammation, and cellular communications. This study provided a reference for the therapy of diabetes-induced cardiovascular complications.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Exossomos/metabolismo , Cordão Umbilical , Proteômica , Remodelação Vascular , Células-Tronco Mesenquimais/metabolismo , Aorta
20.
Phytomedicine ; 104: 154236, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35797864

RESUMO

BACKGROUND: Chinese medicine (CM) has become a popular interventional treatment for rheumatoid arthritis (RA). However, limited knowledge about general characteristics and long-term clinical outcomes hampers the development of CM for RA. PURPOSE: The main objectives of the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) were to describe the population of RA patients receiving CM treatment in multiple centers in China using different variables and compare these findings with internationally reported data. STUDY DESIGN: The CERTAIN is a prospective, multicenter, observational disease registry. METHODS: Adult RA patients who fulfilled the 2010 American College of Rheumatology/ European League Against Rheumatism classification criteria for RA and received CM treatment were recruited into the CERTAIN by rheumatologists from 145 hospitals across 30 provinces in China. Data on demographics, disease characteristics, comorbidities, treatments, and adverse events, with a 2-year follow-up, were collected and documented using a predefined protocol. RESULTS: In the 2 years since the study began in September 2019, 11,764 patients have been enrolled (enrolment is ongoing), and 13.10% of participants have completed the 6-month follow-up. We present the baseline characteristics of the first 11,764 enrollees. CONCLUSIONS: The CERTAIN is the first nationwide registry to document comprehensive data on CM treatment in patients with RA. The development of the CERTAIN resource is a significant step forward for Chinese RA patients, herbal medicine users, and research communities and will deepen our understanding of CM for RA. REGISTRATION: The study was registered at ClinicalTrials.gov (NCT05219214).


Assuntos
Antirreumáticos , Artrite Reumatoide , Adulto , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/epidemiologia , China/epidemiologia , Humanos , Medicina Tradicional Chinesa , Estudos Prospectivos , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...