Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2616, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147290

RESUMO

The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.


Assuntos
Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária , Genes MHC da Classe II , Mutagênese , Ligação Proteica
2.
Nat Commun ; 7: 11966, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384267

RESUMO

Talin, a force-bearing cytoplasmic adapter essential for integrin-mediated cell adhesion, links the actin cytoskeleton to integrin-based cell-extracellular matrix adhesions at the plasma membrane. Its C-terminal rod domain, which contains 13 helical bundles, plays important roles in mechanosensing during cell adhesion and spreading. However, how the structural stability and transition kinetics of the 13 helical bundles of talin are utilized in the diverse talin-dependent mechanosensing processes remains poorly understood. Here we report the force-dependent unfolding and refolding kinetics of all talin rod domains. Using experimentally determined kinetics parameters, we determined the dynamics of force fluctuation during stretching of talin under physiologically relevant pulling speeds and experimentally measured extension fluctuation trajectories. Our results reveal that force-dependent stochastic unfolding and refolding of talin rod domains make talin a very effective force buffer that sets a physiological force range of only a few pNs in the talin-mediated force transmission pathway.


Assuntos
Proteínas Recombinantes de Fusão/química , Imagem Individual de Molécula/métodos , Talina/química , Animais , Sítios de Ligação , Fenômenos Biomecânicos , Clonagem Molecular , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Cinética , Camundongos , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Mecânico , Talina/genética , Talina/metabolismo , Termodinâmica
3.
Biophys J ; 109(11): 2338-51, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26636945

RESUMO

Several recent experiments suggest that sharply bent DNA has a surprisingly high bending flexibility, but the cause of this flexibility is poorly understood. Although excitation of flexible defects can explain these results, whether such excitation can occur with the level of DNA bending in these experiments remains unclear. Intriguingly, the DNA contained preexisting nicks in most of these experiments but whether nicks might play a role in flexibility has never been considered in the interpretation of experimental results. Here, using full-atom molecular dynamics simulations, we show that nicks promote DNA basepair disruption at the nicked sites, which drastically reduces DNA bending energy. In addition, lower temperatures suppress the nick-dependent basepair disruption. In the absence of nicks, basepair disruption can also occur but requires a higher level of DNA bending. Therefore, basepair disruption inside B-form DNA can be suppressed if the DNA contains preexisting nicks. Overall, our results suggest that the reported mechanical anomaly of sharply bent DNA is likely dependent on preexisting nicks, therefore the intrinsic mechanisms of sharply bent nick-free DNA remain an open question.


Assuntos
Pareamento de Bases , DNA/química , Elasticidade , Sequência de Bases , DNA/genética , Simulação de Dinâmica Molecular , Temperatura
5.
Nat Commun ; 5: 4525, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25077739

RESUMO

Force sensing at cadherin-mediated adhesions is critical for their proper function. α-Catenin, which links cadherins to actomyosin, has a crucial role in this mechanosensing process. It has been hypothesized that force promotes vinculin binding, although this has never been demonstrated. X-ray structure further suggests that α-catenin adopts a stable auto-inhibitory conformation that makes the vinculin-binding site inaccessible. Here, by stretching single α-catenin molecules using magnetic tweezers, we show that the subdomains MI vinculin-binding domain (VBD) to MIII unfold in three characteristic steps: a reversible step at ~5 pN and two non-equilibrium steps at 10-15 pN. 5 pN unfolding forces trigger vinculin binding to the MI domain in a 1:1 ratio with nanomolar affinity, preventing MI domain refolding after force is released. Our findings demonstrate that physiologically relevant forces reversibly unfurl α-catenin, activating vinculin binding, which then stabilizes α-catenin in its open conformation, transforming force into a sustainable biochemical signal.


Assuntos
Proteínas Recombinantes de Fusão/química , Vinculina/química , alfa Catenina/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Campos Magnéticos , Mecanotransdução Celular , Camundongos , Pinças Ópticas , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Mecânico , Vinculina/genética , Vinculina/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
6.
Sci Rep ; 4: 4610, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24714394

RESUMO

The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ∼5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression.


Assuntos
Fenômenos Mecânicos , Dobramento de Proteína , Talina/metabolismo , Vinculina/metabolismo , Sítios de Ligação , Adesões Focais/metabolismo , Magnetismo , Conformação Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Estresse Mecânico , Ressonância de Plasmônio de Superfície
7.
Sci Rep ; 3: 3508, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336435

RESUMO

Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Algoritmos , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Modelos Teóricos , Ligação Proteica
8.
Biophys J ; 101(5): 1231-7, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21889461

RESUMO

Prompted by recent reports suggesting that interaction of filamin A (FLNa) with its binding partners is regulated by mechanical force, we examined mechanical properties of FLNa domains using magnetic tweezers. FLNa, an actin cross-linking protein, consists of two subunits that dimerize through a C-terminal self-association domain. Each subunit contains an N-terminal spectrin-related actin-binding domain followed by 24 immunoglobulinlike (Ig) repeats. The Ig repeats in the rod 1 segment (repeats 1-15) are arranged as a linear array, whereas rod 2 (repeats 16-23) is more compact due to interdomain interactions. In the rod 1 segment, repeats 9-15 augment F-actin binding to a much greater extent than do repeats 1-8. Here, we report that the three segments are unfolded at different forces under the same loading rate. Remarkably, we found that repeats 16-23 are susceptible to forces of ∼10 pN or even less, whereas the repeats in the rod 1 segment can withstand significantly higher forces. The differential force response of FLNa Ig domains has broad implications, since these domains not only support the tension of actin network but also interact with many transmembrane and signaling proteins, mostly in the rod 2 segment. In particular, our finding of unfolding of repeats 16-23 at ∼10 pN or less is consistent with the hypothesized force-sensing function of the rod 2 segment in FLNa.


Assuntos
Proteínas Contráteis/química , Fenômenos Mecânicos , Proteínas dos Microfilamentos/química , Fenômenos Biomecânicos , Proteínas Contráteis/metabolismo , Filaminas , Imunoglobulinas/química , Proteínas dos Microfilamentos/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína
9.
Biophys J ; 100(2): 517-23, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21244848

RESUMO

Although magnetic tweezers have many unique advantages in terms of specificity, throughput, and force stability, this tool has had limited application on short tethers because accurate measurement of force has been difficult for short tethers under large tension. Here, we report a method that allows us to apply magnetic tweezers to stretch short biomolecules with accurate force calibration over a wide range of up to 100 pN. We demonstrate the use of the method by overstretching of a short DNA and unfolding/refolding a protein of filamin A immunoglobulin domains 1-8. Other potential applications of this method are also discussed.


Assuntos
Proteínas Contráteis/química , DNA/química , Fragmentos de Imunoglobulinas/química , Magnetismo/métodos , Proteínas dos Microfilamentos/química , Pinças Ópticas , Calibragem , Filaminas , Magnetismo/instrumentação , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...