Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 89: 106162, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36113208

RESUMO

Many brittle materials, such as single-crystal materials, amorphous materials, and ceramics, are widely used in many industries such as the energy industry, aerospace industry, and biomedical industry. In recent years, there is an increasing demand for high-precision micro-machining of these brittle materials to produce precision functional parts. Traditional ultra-precision micro-machining can lead to workpiece cracking, low machined surface quality, and reduced tool life. To reduce and further solve these problems, a new micro-machining process is needed. As one of the nontraditional machining processes, rotary ultrasonic machining is an effective method to reduce the issues generated by traditional machining processes of brittle materials. Therefore, rotary ultrasonic micro-machining (RUµM) is investigated to conduct the surface micro-machining of brittle materials. Due to the small diameter cutting tool (<500 µm) and high accuracy requirements, the impact of input parameters in the rotary ultrasonic surface micro-machining (RUSµM) process on tool deformation and cutting quality is extremely different from that in rotary ultrasonic surface machining (RUSM) with relatively large diameter cutting tool (∼10 mm). Up till now, there is still no investigation on the effects of ultrasonic vibration (UV) and input variables (such as tool rotation speed and depth of cut) on cutting force and machined surface quality in RUSµM of brittle materials. To fill this knowledge gap, rotary ultrasonic surface micro-machining of the silicon wafer (one of the most versatile brittle materials) was conducted in this study. The effects of ultrasonic vibration, tool rotation speed, and depth of cut on tool trajectory, material removal rate (MRR), cutting force, cutting surface quality, and residual stress were investigated. Results show that the ultrasonic vibration could reduce the cutting force, improve the cutting surface quality, and suppress the residual compressive stress, especially under conditions with high tool rotation speed.


Assuntos
Silício , Ultrassom , Cerâmica , Indústrias/métodos , Fenômenos Mecânicos
2.
Research (Wash D C) ; 2022: 9847949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265849

RESUMO

A novel class of polymers and oligomers of chiral folding chirality has been designed and synthesized, showing structurally compacted triple-column/multiple-layer frameworks. Both uniformed and differentiated aromatic chromophoric units were successfully constructed between naphthyl piers of this framework. Screening monomers, catalysts, and catalytic systems led to the success of asymmetric catalytic Suzuki-Miyaura polycouplings. Enantio- and diastereochemistry were unambiguously determined by X-ray structural analysis and concurrently by comparison with a similar asymmetric induction by the same catalyst in the asymmetric synthesis of a chiral three-layered product. The resulting chiral polymers exhibit intense fluorescence activity in a solid form and solution under specific wavelength irradiation.

3.
Chemistry ; 28(7): e202200183, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092103

RESUMO

Invited for the cover of this issue are Guigen Li's groups at Texas Tech University and Nanjing University. The cover artwork shows that chirality patterns exist from universal to molecular levels showing light emission properties. Read the full story of multilayer 3D chirality and its asymmetric catalytic synthesis at 10.1002/chem.202104102.


Assuntos
Polímeros , Catálise , Humanos
4.
Chemistry ; 28(7): e202104102, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962686

RESUMO

Unprecedented chiral multilayer folding 3D polymers have been assembled and regulated by uniform and differentiated aromatic chromophore units between naphthyl piers. Screening catalysts, catalytic systems and monomers were proven to be crucial for asymmetric catalytic Suzuki-Miyaura polycouplings for this assembly. X-ray crystallography of the corresponding dimers and trimers revealed the absolute configuration and the intermolecular packing pattern. Up to 61 960 Mw /41 900 Mn and m/z 4317 for polymers and oligomers, as confirmed by gel permeation chromatography (GPC) and MALDI-TOF MS, indicated that these frameworks were composed of multiple stacked layers. The resulting multiple π-assemblies exhibited remarkable optical properties in aggregated states (photoluminescence in solids and aggregation-induced emission in solutions), as well as reversible redox properties in electrochemical performance.


Assuntos
Polímeros , Catálise , Cromatografia em Gel , Cristalografia por Raios X
5.
Polymers (Basel) ; 11(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766185

RESUMO

In this study, tough and conductive hydrogels were printed by 3D printing method. The combination of thermo-responsive agar and ionic-responsive alginate can highly improve the shape fidelity. With addition of agar, ink viscosity was enhanced, further improving its rheological characteristics for a precise printing. After printing, the printed construct was cured via free radical polymerization, and alginate was crosslinked by calcium ions. Most importantly, with calcium crosslinking of alginate, mechanical properties of 3D printed hydrogels are greatly improved. Furthermore, these 3D printed hydrogels can serve as ionic conductors, because hydrogels contain large amounts of water that dissolve excess calcium ions. A wearable resistive strain sensor that can quickly and precisely detect human motions like finger bending was fabricated by a 3D printed hydrogel film. These results demonstrate that the conductive, transparent, and stretchable hydrogels are promising candidates as soft wearable electronics for healthcare, robotics and entertainment.

6.
Mater Sci Eng C Mater Biol Appl ; 105: 110059, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546421

RESUMO

Post-surgery infection is one of the main causes of orthopedic implant failure. This paper presents a powder-feed 3D printing strategy for fabrication of silver (Ag) incorporated titanium (Ti) alloys as an antimicrobial solution for orthopedic implants. Alloys with various Ag concentration, ranging from 0.5% to 2% by weight, were fabricated through laser engineered net shaping (LENS) process. The composition and surface of the fabricated alloys were characterized through X-ray diffraction, energy-dispersive X-ray spectroscopy, and 3D surface profiling. The mechanical properties, antimicrobial performance, and biocompatibility of the alloys were also investigated. Results showed that LENS fabricated TiAg alloys had a marginally higher microhardness and a lower ductility compared to pure Ti. Within only 3 h, TiAg alloys significantly reduced the bacterial attachment of both gram-positive and gram-negative strains by one to four orders of magnitudes. These alloys also demonstrated excellent in-vitro biocompatibility to human osteosarcoma cells. For the first time, laser engineered net shaping (LENS) of TiAg alloy has been explored as an antimicrobial solution for orthopedic applications and showed great potential for biomedical instrumentation.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Lasers , Pseudomonas aeruginosa/crescimento & desenvolvimento , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Titânio , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Humanos , Prata/química , Prata/farmacologia , Titânio/química , Titânio/farmacologia
7.
Ultrasonics ; 97: 19-28, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31030058

RESUMO

Rotary ultrasonic machining has been successfully explored in surface machining of carbon fiber reinforced plastic (CFRP) composites. It has been proven to be an effective and efficient CFRP machining method. Both theoretical and experimental investigations have been conducted with the assumption that the CFRP is removed by brittle fracture removal mode. However, in brittle material machining, ductile flow phenomenon still exists. Ductile scratching marks are also observed on the machined CFRP surfaces. It is still unknown that what actual material removal modes are under different machining variables. To investigate the material removal mechanisms in rotary ultrasonic surface machining (RUSM) of CFRP, single abrasive scratching tests were conducted. The scratching induced characteristics and scratching forces were analyzed. Both the ductile removal mode and the brittle fracture removal mode were observed and identified in both carbon fiber layers and epoxy resin layers on the machined marks by using scanning electron microscopy (SEM) imaging. With the increase of scratching depth, the material removal mode of CFRP was changed from the ductile removal mode to the brittle fracture mode. From the analysis of kinematic trajectory of diamond grain, the scratching cutting forces were decreased in the tests with the assistance of ultrasonic vibration under the same machining variables. The generation mechanisms of the delamination were analyzed and discussed.

8.
Materials (Basel) ; 10(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120374

RESUMO

AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

9.
Materials (Basel) ; 10(4)2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772702

RESUMO

As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718.

10.
Ultrasonics ; 76: 44-51, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28040629

RESUMO

Rotary ultrasonic machining (RUM) has been investigated in machining of brittle, ductile, as well as composite materials. Ultrasonic vibration amplitude, as one of the most important input variables, affects almost all the output variables in RUM. Numerous investigations on measuring ultrasonic vibration amplitude without RUM machining have been reported. In recent years, ultrasonic vibration amplitude measurement with RUM of ductile materials has been investigated. It is found that the ultrasonic vibration amplitude with RUM was different from that without RUM under the same input variables. RUM is primarily used in machining of brittle materials through brittle fracture removal. With this reason, the method for measuring ultrasonic vibration amplitude in RUM of ductile materials is not feasible for measuring that in RUM of brittle materials. However, there are no reported methods for measuring ultrasonic vibration amplitude in RUM of brittle materials. In this study, ultrasonic vibration amplitude in RUM of brittle materials is investigated by establishing a mechanistic amplitude model through cutting force. Pilot experiments are conducted to validate the calculation model. The results show that there are no significant differences between amplitude values calculated by model and those obtained from experimental investigations. The model can provide a relationship between ultrasonic vibration amplitude and input variables, which is a foundation for building models to predict other output variables in RUM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...