Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836616

RESUMO

Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from Bacillus megaterium. The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C-H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM-P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.

2.
Chem Sci ; 15(21): 8062-8070, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817576

RESUMO

P450-catalyzed O-demethylation reactions have recently attracted particular attention because of their potential applications in lignin bioconversion. We recently enabled the peroxygenase activity of CYP199A4, a NADH-dependent cytochrome P450 monooxygenase from Rhodopseudomonas palustris, by engineering a hydrogen peroxide (H2O2) tunnel. In this report, we reveal by crystallography and molecule dynamics simulations that key residues located at one of the water tunnels in CYP199A4 play a crucial gating role, which enhances the peroxygenase activity by regulating the inflow of H2O2. These results provide a more complete understanding of the mechanism by which monooxygenase is converted into peroxygenase activity through the H2O2 tunnel engineering (HTE) strategy. Furthermore, a library of engineered CYP199A4 peroxygenases was constructed to explore their application potentials for O-demethylation of various methoxy-substituted benzoic acid derivatives. The engineered CYP199A4 peroxygenases showed good functional group tolerance and preferential O-demethylation at the meta- or para-position, indicating potential O-demethylation of H- and G-type lignin monomers. This work reveals the feasibility of the HTE strategy in creating P450 peroxygenase from a mechanistic perspective, laying the foundation for developing an effective P450 O-demethylase applicable in lignin bioconversion.

3.
Acc Chem Res ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293787

RESUMO

ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C-H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid-base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O-O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O-O cleavage of the adduct Fe-O-OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C-H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C-H bonds in synthetic chemistry.

4.
Angew Chem Int Ed Engl ; 62(51): e202311259, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37713467

RESUMO

A recent novel strategy for constructing artificial metalloenzymes (ArMs) that target new-to-nature functions uses dual-functional small molecules (DFSMs) with catalytic and anchoring groups for converting P450BM3 monooxygenase into a peroxygenase. However, this process requires excess DFSMs (1000 equivalent of P450) owing to their low binding affinity for P450, thus severely limiting its practical application. Herein, structural optimization of the DFSM-anchoring group considerably enhanced their binding affinity by three orders of magnitude (Kd ≈10-8  M), thus approximating native cofactors, such as FMN or FAD in flavoenzymes. An artificial cofactor-driven peroxygenase was thus constructed. The co-crystal structure of P450BM3 bound to a DFSM clearly revealed a precatalytic state in which the DFSM participates in H2 O2 activation, thus facilitating peroxygenase activity. Moreover, the increased binding affinity substantially decreases the DFSM load to as low as 2 equivalents of P450, while maintaining increased activity. Furthermore, replacement of catalytic groups showed disparate selectivity and activity for various substrates. This study provides an unprecedented approach for assembling ArMs by binding editable organic cofactors as a co-catalytic center, thereby increasing the catalytic promiscuity of P450 enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Metaloproteínas , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise , Metaloproteínas/química
5.
J Am Chem Soc ; 145(9): 5506-5511, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790023

RESUMO

Given prominent physicochemical similarities between H2O2 and water, we report a new strategy for promoting the peroxygenase activity of P450 enzymes by engineering their water tunnels to facilitate H2O2 access to the heme center buried therein. Specifically, the H2O2-driven activities of two native NADH-dependent P450 enzymes (CYP199A4 and CYP153AM.aq) increase significantly (by >183-fold and >15-fold, respectively). Additionally, the amount of H2O2 required for an artificial P450 peroxygenase facilitated by a dual-functional small molecule to obtain the desired product is reduced by 95%-97.5% (with ∼95% coupling efficiency). Structural analysis suggests that mutating the residue at the bottleneck of the water tunnel may open a second pathway for H2O2 to flow to the heme center (in addition to the natural substrate tunnel). This study highlights a promising, generalizable strategy whereby P450 monooxygenases can be modified to adopt peroxygenase activity through H2O2 tunnel engineering, thus broadening the application scope of P450s in synthetic chemistry and synthetic biology.


Assuntos
Sistema Enzimático do Citocromo P-450 , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química
6.
Angew Chem Int Ed Engl ; 62(13): e202217678, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36660956

RESUMO

Applications of the peroxidase activity of cytochrome P450 enzymes in synthetic chemistry remain largely unexplored. We present herein a protein engineering strategy to increase cytochrome P450BM3 peroxidase activity for the direct nitration of aromatic compounds and terminal aryl-substituted olefins in the presence of a dual-functional small molecule (DFSM). Site-directed mutations of key active-site residues allowed the efficient regulation of steric effects to limit substrate access and, thus, a significant decrease in monooxygenation activity and increase in peroxidase activity. Nitration of several phenol and aniline compounds also yielded ortho- and para-nitration products with moderate-to-high total turnover numbers. Besides direct aromatic nitration by P450 variants using nitrite as a nitrating agent, we also demonstrated the use of the DFSM-facilitated P450 peroxidase system for the nitration of the vinyl group of styrene and its derivatives.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hidrocarbonetos , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Orgânicos , Fenóis/química , Peroxidases
7.
Angew Chem Int Ed Engl ; 62(4): e202215088, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417593

RESUMO

It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.


Assuntos
Simulação de Dinâmica Molecular , Engenharia de Proteínas , Hidroxilação , Estereoisomerismo , Domínio Catalítico , Especificidade por Substrato
8.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887253

RESUMO

We recently developed an artificial P450-H2O2 system assisted by dual-functional small molecules (DFSMs) to modify the P450BM3 monooxygenase into its peroxygenase mode, which could be widely used for the oxidation of non-native substrates. Aiming to further improve the DFSM-facilitated P450-H2O2 system, a series of novel DFSMs having various unnatural amino acid groups was designed and synthesized, based on the co-crystal structure of P450BM3 and a typical DFSM, N-(ω-imidazolyl)-hexanoyl-L-phenylalanine, in this study. The size and hydrophobicity of the amino acid residue in the DFSM drastically affected the catalytic activity (up to 5-fold), stereoselectivity, and regioselectivity of the epoxidation and hydroxylation reactions. Docking simulations illustrated that the differential catalytic ability among the DFSMs is closely related to the binding affinity and the distance between the catalytic group and heme iron. This study not only enriches the DFSM toolbox to provide more options for utilizing the peroxide-shunt pathway of cytochrome P450BM3, but also sheds light on the great potential of the DFSM-driven P450 peroxygenase system in catalytic applications based on DFSM tunability.


Assuntos
Sistema Enzimático do Citocromo P-450 , Peróxido de Hidrogênio , Aminoácidos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroxilação , Oxigenases de Função Mista
9.
Antioxidants (Basel) ; 11(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326179

RESUMO

Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.

10.
ChemSusChem ; 15(9): e202101116, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34288540

RESUMO

The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.


Assuntos
Alcanos , Sistema Enzimático do Citocromo P-450 , Biocatálise , Catálise , Oxirredução
11.
Chem Sci ; 12(18): 6307-6314, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34084428

RESUMO

Unlike the excellent (S)-enantioselective epoxidation of styrene performed by natural styrene monooxygenases (ee > 99%), the (R)-enantioselective epoxidation of styrene has not yet achieved a comparable efficiency using natural or engineered oxidative enzymes. This report describes the H2O2-dependent (R)-enantioselective epoxidation of unfunctionalized styrene and its derivatives by site-mutated variants of a unique non-natural P450BM3 peroxygenase, working in tandem with a dual-functional small molecule (DFSM). The observed (R)-enantiomeric excess (ee) of styrene epoxidation is up to 99% with a turnover number (TON) of 918 by the best enantioselective mutant F87A/T268I/L181Q, while the best active mutant F87A/T268I/V78A/A184L (with 98% ee) gave a catalytic TON of 4350, representing the best activity of a P450 peroxygenase towards styrene epoxidation to date. Following this approach, a set of styrene derivatives, such as o-, m-, p-chlorostyrenes and fluorostyrenes, could also be epoxidized with modest to very good TONs (362-3480) and high (R)-enantioselectivities (95-99% ee). The semi-preparative scale synthesis of (R)-styrene oxide performed at 0 °C with high conversion, maintaining enantioselectivity, and moderate isolated yields, further suggests the potential application of the current P450 enzymatic system in styrene epoxidation. This study indicates that the synergistic use of protein engineering and an exogenous DFSM constitutes an efficient strategy to control the enantioselectivity of styrene epoxidation, thus substantially expanding the chemical scope of P450 enzymes as useful bio-oxidative catalysts.

12.
Chemistry ; 25(28): 6853-6863, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30698852

RESUMO

Cytochrome P450 enzymes (P450s) catalyze the monooxygenation of various organic substrates. These enzymes are fascinating and promising biocatalysts for synthetic applications. Despite the impressive abilities of P450s in the oxidation of C-H bonds, their practical applications are restricted by intrinsic drawbacks, such as poor stability, low turnover rates, the need for expensive cofactors (e.g., NAD(P)H), and the narrow scope of useful non-native substrates. These issues may be overcome through the general strategy of protein engineering, which focuses on the improvement of the catalysts themselves. Alternatively, several emerging strategies have been developed that regulate the P450 catalytic process from the viewpoint of the substrate. These strategies include substrate engineering, decoy molecule, and dual-functional small-molecule co-catalysis. Substrate engineering focuses on improving the substrate acceptance and reaction selectivity by means of an anchoring group. The latter two strategies utilize co-substrate-like small molecules that either are proposed to reform the active site, thereby switching the substrate specificity, or directly participate in the catalytic process, thereby creating new catalytic peroxygenation capabilities towards non-native substrates. For at least 10 years, these approaches have played unique roles in solving the problems highlighted above, either alone or in conjunction with protein engineering. Herein, we review three strategies for substrate regulation in the P450-catalyzed oxidation of non-native substrates. Furthermore, we address remaining challenges and potential solutions associated with these approaches.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Animais , Bactérias/química , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Humanos , Simulação de Acoplamento Molecular , Oxirredução , Engenharia de Proteínas/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Especificidade por Substrato
13.
Angew Chem Int Ed Engl ; 57(26): 7628-7633, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29481719

RESUMO

We report a unique strategy for the development of a H2 O2 -dependent cytochrome P450BM3 system, which catalyzes the monooxygenation of non-native substrates with the assistance of dual-functional small molecules (DFSMs), such as N-(ω-imidazolyl fatty acyl)-l-amino acids. The acyl amino acid group of DFSM is responsible for bounding to enzyme as an anchoring group, while the imidazolyl group plays the role of general acid-base catalyst in the activation of H2 O2 . This system affords the best peroxygenase activity for the epoxidation of styrene, sulfoxidation of thioanisole, and hydroxylation of ethylbenzene among those P450-H2 O2 system previously reported. This work provides the first example of the activation of the normally H2 O2 -inert P450s through the introduction of an exogenous small molecule. This approach improves the potential use of P450s in organic synthesis as it avoids the expensive consumption of the reduced nicotinamide cofactor NAD(P)H and its dependent electron transport system. This introduces a promising approach for exploiting enzyme activity and function based on direct chemical intervention in the catalytic process.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Bibliotecas de Moléculas Pequenas/química , Derivados de Benzeno/química , Catálise , Sistema Enzimático do Citocromo P-450/química , Transporte de Elétrons , Compostos de Epóxi/química , Peróxido de Hidrogênio/química , Hidroxilação , Oxigenases de Função Mista/química , NADP/química , Oxirredução , Estireno/química , Especificidade por Substrato , Sulfetos/química
14.
Angew Chem Int Ed Engl ; 56(35): 10324-10329, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28544674

RESUMO

The selective hydroxylation of benzene to phenol, without the formation of side products resulting from overoxidation, is catalyzed by cytochrome P450BM3 with the assistance of amino acid derivatives as decoy molecules. The catalytic turnover rate and the total turnover number reached 259 min-1 P450BM3-1 and 40 200 P450BM3-1 when N-heptyl-l-proline modified with l-phenylalanine (C7-l-Pro-l-Phe) was used as the decoy molecule. This work shows that amino acid derivatives with a totally different structure from fatty acids can be used as decoy molecules for aromatic hydroxylation by wild-type P450BM3. This method for non-native substrate hydroxylation by wild-type P450BM3 has the potential to expand the utility of P450BM3 for biotransformations.


Assuntos
Aminoácidos/metabolismo , Benzeno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis/metabolismo , Aminoácidos/química , Benzeno/química , Hidroxilação , Estrutura Molecular , Fenóis/química
15.
Inorg Chem ; 53(19): 10632-41, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25222493

RESUMO

Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.


Assuntos
Hidrogênio/química , Ferro/química , Metaloporfirinas/química , Oxigênio/química , Cátions/química , Radicais Livres/química , Hidroxilação , Cinética , Estrutura Molecular , Tetra-Hidronaftalenos/química , Xantenos/química
16.
J Am Chem Soc ; 134(51): 20617-20, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23214510

RESUMO

A hypochloritoiron(III) porphyrin species has been proposed as a key intermediate in an antimicrobial defense system in neutrophils and in heme-catalyzed chlorination reactions. We report herein the preparation, spectroscopic characterization, and reactivity of the bis(hypochlorito)iron(III) porphyrin complex [(TPFP)Fe(III)(OCl)(2)](-) (1) and the imidazole-hypochloritoiron complexes (TPFP)Fe(III)(OCl)(1-R-Im) [R = CH(3) (2), H (3), CH(2)CO(2)H (4)], in which TPFP is 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinate. The structures of 1-4 were confirmed by absorption, (2)H and (19)F NMR, EPR, and resonance Raman spectroscopy and electrospray ionization mass spectrometry at low temperature. The reactions of 1 and 2 with various organic substrates show that 1 and 2 are capable of chlorination, sulfoxidation, and epoxidation reactions and that 1 is much more reactive with these substrates than 2.


Assuntos
Compostos Férricos/química , Hidrocarbonetos Clorados/química , Ácido Hipocloroso/química , Imidazóis/química , Porfirinas/química , Compostos de Epóxi/química , Compostos Férricos/síntese química , Halogenação , Hidrocarbonetos Clorados/síntese química , Ácido Hipocloroso/síntese química , Imidazóis/síntese química , Porfirinas/síntese química , Análise Espectral , Sulfóxidos/química
17.
J Am Chem Soc ; 134(10): 4469-72, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22375905

RESUMO

Iron(III) isoporphyrin, a tautomer of porphyrin with a saturated meso carbon, is one of the isoelectronic forms of oxoiron(IV) porphyrin π-cation radical, which is known as an important reactive intermediate of various heme enzymes. The isoporphyrin has been believed to be incapable of catalyzing oxygenation and oxidation reactions. Here, we report that an oxoiron(IV) porphyrin π-cation radical can be converted to iron(III) meso-chloro-isoporphyrin in the presence of trifluoroacetic acid and chloride ion. More importantly, this study shows the first evidence that iron(III) meso-chloro-isoporphyrin is an excellent reactive agent for chlorinating aromatic compounds and olefins. The results of this study suggest that the mechanism involves electrophilic chlorination of substrate with iron(III) meso-chloro-isoporphyrin.


Assuntos
Cloro/química , Compostos Férricos/química , Porfirinas/química , Espectroscopia de Ressonância Magnética , Oxirredução , Espectrofotometria Ultravioleta
18.
Angew Chem Int Ed Engl ; 50(42): 9935-9, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21913293

RESUMO

Ironing it out: oxoiron(IV) porphyrin π-cation radical complexes serve as models for the oxidation of Cl(-) into an active chlorinating reagent that chlorinates various organic compounds. Evidence suggests that Cl(-) is oxidized to Cl(2) via Cl·. The mechanism involving either direct electron transfer or iron(III) hypochlorite formation, and then homolysis of the Cl-O bond is discussed.


Assuntos
Cloretos/química , Hidrocarbonetos Clorados/síntese química , Ferro/química , Metaloporfirinas/química , Cátions/química , Radicais Livres/química , Hidrocarbonetos Clorados/química , Metaloporfirinas/síntese química , Estrutura Molecular , Oxirredução
19.
J Org Chem ; 74(10): 3978-81, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19385611

RESUMO

The oxidation of monoalkyl 2-(9H-xanthenyl)malonates 1 with Mn(OAc)(3) gave the 9- or 10-dibenz[b,f]oxepincarboxylates 2 in good yields. The reaction proceeds with high regioselectivity except for the case of (1-methoxyxanthenyl)malonate 1 (R(1) = Me, R(2) = 1-MeO), which gave two regioisomers. It was proposed that the process for the formation of 2 must include the 1,2-aryl radical rearrangement followed by oxidative decarboxylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...