Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Cell Discov ; 10(1): 92, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223112

RESUMO

Human ABC transporters ABCD1-3 are all localized on the peroxisomal membrane and participate in the ß-oxidation of fatty acyl-CoAs, but they differ from each other in substrate specificity. The transport of branched-chain fatty acids from cytosol to peroxisome is specifically driven by ABCD3, dysfunction of which causes severe liver diseases such as hepatosplenomegaly. Here we report two cryogenic electron microscopy (cryo-EM) structures of ABCD3 bound to phytanoyl-CoA and ATP at resolutions of 2.9 Å and 3.2 Å, respectively. A pair of phytanoyl-CoA molecules were observed in ABCD3, each binding to one transmembrane domain (TMD), which is distinct from our previously reported structure of ABCD1, where each fatty acyl-CoA molecule strongly crosslinks two TMDs. Upon ATP binding, ABCD3 exhibits a conformation that is open towards the peroxisomal matrix, leaving two extra densities corresponding to two CoA molecules deeply embedded in the translocation cavity. Structural analysis combined with substrate-stimulated ATPase activity assays indicated that the present structures might represent two states of ABCD3 in the transport cycle. These findings advance our understanding of fatty acid oxidation and the molecular pathology of related diseases.

2.
Structure ; 32(8): 1110-1120.e4, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38823379

RESUMO

Carboxysomes are large self-assembled microcompartments that serve as the central machinery of a CO2-concentrating mechanism (CCM). Biogenesis of carboxysome requires the fine organization of thousands of individual proteins; however, the packaging pattern of internal RuBisCOs remains largely unknown. Here we purified the intact ß-carboxysomes from Synechococcus elongatus PCC 7942 and identified the protein components by mass spectrometry. Cryo-electron tomography combined with subtomogram averaging revealed the general organization pattern of internal RuBisCOs, in which the adjacent RuBisCOs are mainly arranged in three distinct manners: head-to-head, head-to-side, and side-by-side. The RuBisCOs in the outermost layer are regularly aligned along the shell, the majority of which directly interact with the shell. Moreover, statistical analysis enabled us to propose an ideal packaging model of RuBisCOs in the ß-carboxysome. These results provide new insights into the biogenesis of ß-carboxysomes and also advance our understanding of the efficient carbon fixation functionality of carboxysomes.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Ribulose-Bifosfato Carboxilase , Synechococcus , Synechococcus/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Microscopia Crioeletrônica/métodos , Modelos Moleculares
3.
Microbiol Spectr ; 12(6): e0029824, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38695606

RESUMO

The cyanosiphophage Mic1 specifically infects the bloom-forming Microcystis aeruginosa FACHB 1339 from Lake Chaohu, China. Previous genomic analysis showed that its 92,627 bp double-stranded DNA genome consists of 98 putative open reading frames, 63% of which are of unknown function. Here, we investigated the transcriptome dynamics of Mic1 and its host using RNA sequencing. In the early, middle, and late phases of the 10 h lytic cycle, the Mic1 genes are sequentially expressed and could be further temporally grouped into two distinct clusters in each phase. Notably, six early genes, including gp49 that encodes a TnpB-like transposase, immediately reach the highest transcriptional level in half an hour, representing a pioneer cluster that rapidly regulates and redirects host metabolism toward the phage. An in-depth analysis of the host transcriptomic profile in response to Mic1 infection revealed significant upregulation of a polyketide synthase pathway and a type III-B CRISPR system, accompanied by moderate downregulation of the photosynthesis and key metabolism pathways. The constant increase of phage transcripts and relatively low replacement rate over the host transcripts indicated that Mic1 utilizes a unique strategy to gradually take over a small portion of host metabolism pathways after infection. In addition, genomic analysis of a less-infective Mic1 and a Mic1-resistant host strain further confirmed their dynamic interplay and coevolution via the frequent horizontal gene transfer. These findings provide insights into the mutual benefit and symbiosis of the highly polymorphic cyanobacteria M. aeruginosa and cyanophages. IMPORTANCE: The highly polymorphic Microcystis aeruginosa is one of the predominant bloom-forming cyanobacteria in eutrophic freshwater bodies and is infected by diverse and abundant cyanophages. The presence of a large number of defense systems in M. aeruginosa genome suggests a dynamic interplay and coevolution with the cyanophages. In this study, we investigated the temporal gene expression pattern of Mic1 after infection and the corresponding transcriptional responses of its host. Moreover, the identification of a less-infective Mic1 and a Mic1-resistant host strain provided the evolved genes in the phage-host coevolution during the multiple-generation cultivation in the laboratory. Our findings enrich the knowledge on the interplay and coevolution of M. aeruginosa and its cyanophages and lay the foundation for the future application of cyanophage as a potential eco-friendly and bio-safe agent in controlling the succession of harmful cyanobacterial blooms.


Assuntos
Bacteriófagos , Microcystis , Microcystis/virologia , Microcystis/genética , Microcystis/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiologia , China , Transcriptoma , Lagos/microbiologia , Lagos/virologia , Genoma Viral/genética , Evolução Molecular
4.
Nat Plants ; 10(4): 661-672, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38589484

RESUMO

Carboxysomes are bacterial microcompartments that encapsulate the enzymes RuBisCO and carbonic anhydrase in a proteinaceous shell to enhance the efficiency of photosynthetic carbon fixation. The self-assembly principles of the intact carboxysome remain elusive. Here we purified α-carboxysomes from Prochlorococcus and examined their intact structures using single-particle cryo-electron microscopy to solve the basic principles of their shell construction and internal RuBisCO organization. The 4.2 Å icosahedral-like shell structure reveals 24 CsoS1 hexamers on each facet and one CsoS4A pentamer at each vertex. RuBisCOs are organized into three concentric layers within the shell, consisting of 72, 32 and up to 4 RuBisCOs at the outer, middle and inner layers, respectively. We uniquely show how full-length and shorter forms of the scaffolding protein CsoS2 bind to the inner surface of the shell via repetitive motifs in the middle and C-terminal regions. Combined with previous reports, we propose a concomitant 'outside-in' assembly principle of α-carboxysomes: the inner surface of the self-assembled shell is reinforced by the middle and C-terminal motifs of the scaffolding protein, while the free N-terminal motifs cluster to recruit RuBisCO in concentric, three-layered spherical arrangements. These new insights into the coordinated assembly of α-carboxysomes may guide the rational design and repurposing of carboxysome structures for improving plant photosynthetic efficiency.

5.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457518

RESUMO

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Assuntos
Cianobactérias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo
6.
Nat Commun ; 15(1): 2654, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531972

RESUMO

The Myoviridae cyanophage A-1(L) specifically infects the model cyanobacteria Anabaena sp. PCC 7120. Following our recent report on the capsid structure of A-1(L), here we present the high-resolution cryo-EM structure of its intact tail machine including the neck, tail and attached fibers. Besides the dodecameric portal, the neck contains a canonical hexamer connected to a unique pentadecamer that anchors five extended bead-chain-like neck fibers. The 1045-Å-long contractile tail is composed of a helical bundle of tape measure proteins surrounded by a layer of tube proteins and a layer of sheath proteins, ended with a five-component baseplate. The six long and six short tail fibers are folded back pairwise, each with one end anchoring to the baseplate and the distal end pointing to the capsid. Structural analysis combined with biochemical assays further enable us to identify the dual hydrolytic activities of the baseplate hub, in addition to two host receptor binding domains in the tail fibers. Moreover, the structure of the intact A-1(L) also helps us to reannotate its genome. These findings will facilitate the application of A-1(L) as a chassis cyanophage in synthetic biology.


Assuntos
Anabaena , Myoviridae , Proteínas do Capsídeo/química , Capsídeo
7.
Nat Commun ; 15(1): 1061, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316776

RESUMO

Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.


Assuntos
Bilirrubina , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
8.
Structure ; 32(4): 440-452.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340732

RESUMO

Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.


Assuntos
Microcistinas , Peptídeo Sintases , Peptídeo Sintases/química , Conformação Molecular , Peptídeos
9.
Structure ; 32(1): 1-2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181725

RESUMO

In this issue of Structure, Subramanian et al. present the cryo-EM structure of Shigella podophage HRP29, which possesses a T7-like tail complex surrounded by six P22/Sf6-like tailspikes and two unique decoration proteins. These colorful masks of HRP29 record the frequent events of horizontal gene transfer during evolution.


Assuntos
Bacteriófagos , Shigella , Shigella/virologia , Bacteriófagos/ultraestrutura
10.
Nat Struct Mol Biol ; 31(2): 293-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177666

RESUMO

Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by ∼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.


Assuntos
Proteínas de Bactérias , Compostos Nitrosos , Tiazolidinas , Tiocianatos , Transativadores , Transativadores/genética , Ativação Transcricional , Microscopia Crioeletrônica , Sequência de Bases , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica
12.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6030-6038, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114209

RESUMO

This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and ß,ß'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and ß,ß'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of ß,ß'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.


Assuntos
Boraginaceae , Rizosfera , Microbiologia do Solo , Bactérias/genética , Fósforo , Solo
13.
EMBO J ; 42(17): e113415, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37485728

RESUMO

The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Estradiol , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Estradiol/farmacologia , Estradiol/metabolismo , Mutagênese Sítio-Dirigida
14.
Environ Microbiome ; 18(1): 3, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639816

RESUMO

BACKGROUND: Along with the fast development and urbanization in developing countries, the waterbodies aside the growing cities become heavily polluted and highly eutrophic, thus leading to the seasonal outbreak of cyanobacterial bloom. Systematic isolation and characterization of freshwater cyanophages might provide a biological solution to control the awful blooms. However, genomic sequences and related investigations on the freshwater cyanophages remain very limited to date. RESULTS: Following our recently reported five cyanophages Pam1~Pam5 from Lake Chaohu in China, here we isolated another five cyanophages, termed Pan1~Pan5, which infect the cyanobacterium Pseudanabaena sp. Chao 1811. Whole-genome sequencing showed that they all contain a double-stranded DNA genome of 37.2 to 72.0 kb in length, with less than half of the putative open reading frames annotated with known functions. Remarkably, the siphophage Pan1 encodes an auxiliary metabolic gene phoH and constitutes, together with the host, a complete queuosine modification pathway. Proteomic analyses revealed that although Pan1~Pan5 are distinct from each other in evolution, Pan1 and Pan3 are somewhat similar to our previously identified cyanophages Pam3 and Pam1 at the genomic level, respectively. Moreover, phylogenetic analyses suggested that Pan1 resembles the α-proteobacterial phage vB_DshS-R5C, revealing direct evidence for phage-mediated horizontal gene transfer between cyanobacteria and α-proteobacteria. CONCLUSION: In addition to the previous reports of Pam1~Pam5, the present findings on Pan1~Pan5 largely enrich the library of reference freshwater cyanophages. The abundant genomic information provides a pool to identify novel genes and proteins of unknown function. Moreover, we found for the first time the evolutionary traces in the cyanophage that horizontal gene transfer might occur at the level of not only inter-species, but even inter-phylum. It indicates that the bacteriophage or cyanophage could be developed as a powerful tool for gene manipulation among various species or phyla.

15.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656854

RESUMO

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Assuntos
Myoviridae , Montagem de Vírus , Bacteriófago T4/química , Capsídeo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/química
16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-969957

RESUMO

The appropriate needle device is crucial for obtaining the curative effect of fire needling therapy. The article introduces the material specification, clinical operation, indications, characteristics and advantages of the contemporary traditional fire needling devices (e.g. He's fire needle and Shi 's fire needle) and the contemporary new-type ones (e.g. fire needling with filiform needle and micro-needle); and determines the innovations of modern fire needling. It is anticipated that the needle specifications, production process and operation standard of fire needling devices should be further unified so as to provide the references for the selection of fire needling devices in treatment based on clinical syndrome differentiation and expand the clinical application of fire needling therapy.


Assuntos
Humanos , Masculino , Pontos de Acupuntura , Terapia por Acupuntura , Agulhas
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-989082

RESUMO

Objective:To investigate the effects of neonatal respiratory distress syndrome(NRDS)on thymus of premature infants.Methods:We collected baseline data from premature infants with gestational age of 28~32 weeks in neonatal intensive care unit of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology from January 1, 2019 to December 31, 2019.The largest transverse diameter and the sagittal of thymus were measured by ultrasonography within 24 h of birth, then, the thymic index(TI)and thymic weight index(TWI)were calculated to assess the size of thymus.The preterm neonates were divided into NRDS group and non-NRDS group according to the diagnosic criteria of NRDS, and the two groups were then divided into antenatal corticosteroid administration(ACS)group and non-ACS group according to ACS exposure.We then compared the TI and TWI between these groups.Results:One hundred and sixty-three preterm neonates were enrolled in our study, including 98 NRDS preterm neonates and 65 non NRDS preterm neonates.After matching gestational age and birth weight of the preterm neonates from two groups, 65 preterm neonates with NRDS comprised the NRDS group, and 65 preterm neonates without NRDS served as controls.Preterm neonates in NRDS group had significantly smaller TI[(1.788 ± 0.803)cm 3 vs.(2.420±1.068)cm 3, t=3.818, P<0.01] and TWI[(1.278 ± 0.380)cm 3/kg vs.(1.695 ± 0.491)cm 3/kg, t=5.401, P<0.01] than those in non-NRDS group.Besides, preterm neonates in NRDS group had smaller lymphocytes count[(3.729 ± 1.263)×10 9/L vs.(4.437 ± 1.608)×10 9/L, t=2.789, P<0.01] than that in non-NRDS group.For NRDS preterm neonates, TI[(1.487 ± 0.515)cm 3 vs(2.185 ± 0.942)cm 3, t=3.542, P<0.01] ]and TWI[(1.134± 0.311)cm 3/kg vs(1.469± 0.385)cm 3/kg, t=3.882, P<0.01] in ACS group were significantly smaller than those in non-ACS group.For non-NRDS preterm neonates, TI and TWI in ACS group also were significantly smaller than those in non-ACS group( t=2.676、3.659, P<0.05). Conclusion:NRDS is associated with thymic involution of preterm neonates, and ACS exposure affected the size of thymic in premature infants.

18.
Chinese Acupuncture & Moxibustion ; (12): 1175-1179, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1007462

RESUMO

Due to various constraints, such as clinical implementation conditions and unique characteristics of acupuncture-moxibustion, some randomized controlled trials (RCTs) of acupuncture-moxibustion still suffer from relatively low quality and limited applicability. The single-arm objective performance criteria/performance goal can be considered as an ideal supplementary and alternative research approach to RCTs. In this paper, the feasibility of applying the single-arm objective performance criteria/performance goal in acupuncture-moxibustion clinical research is explored from the limitations of conducting acupuncture-moxibustion RCTs, the principles, the essential design considerations and key statistical steps. In addition, illustrative examples are provided. The objective is to offer insights into resolving practical difficulties in acupuncture-moxibustion clinical research.


Assuntos
Moxibustão , Objetivos , Terapia por Acupuntura , Acupuntura
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008801

RESUMO

This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of β,β'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.


Assuntos
Rizosfera , Microbiologia do Solo , Bactérias/genética , Fósforo , Solo , Boraginaceae
20.
Acta Pharmaceutica Sinica B ; (6): 2086-2106, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982827

RESUMO

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA