Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Neural Eng ; 21(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38167234

RESUMO

Objective: Current efforts to build reliable brain-computer interfaces (BCI) span multiple axes from hardware, to software, to more sophisticated experimental protocols, and personalized approaches. However, despite these abundant efforts, there is still room for significant improvement. We argue that a rather overlooked direction lies in linking BCI protocols with recent advances in fundamental neuroscience.Approach: In light of these advances, and particularly the characterization of the burst-like nature of beta frequency band activity and the diversity of beta bursts, we revisit the role of beta activity in 'left vs. right hand' motor imagery (MI) tasks. Current decoding approaches for such tasks take advantage of the fact that MI generates time-locked changes in induced power in the sensorimotor cortex and rely on band-passed power changes in single or multiple channels. Although little is known about the dynamics of beta burst activity during MI, we hypothesized that beta bursts should be modulated in a way analogous to their activity during performance of real upper limb movements.Main results and Significance: We show that classification features based on patterns of beta burst modulations yield decoding results that are equivalent to or better than typically used beta power across multiple open electroencephalography datasets, thus providing insights into the specificity of these bio-markers.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Imagens, Psicoterapia , Movimento , Mãos , Imaginação , Algoritmos
2.
IEEE J Biomed Health Inform ; 27(10): 4696-4706, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506011

RESUMO

This article presents a new transfer learning method named group learning, that jointly aligns multiple domains (many-to-many) and an extension named fast alignment that aligns any further domain to previously aligned group of domains (many-to-one). The proposed group alignment algorithm (GALIA) is evaluated on brain-computer interface (BCI) data and optimal hyper-parameter values of the algorithm are studied for classification performance and computational cost. Six publicly available P300 databases comprising 333 sessions from 177 subjects are used. As compared to the conventional subject-specific train/test pipeline, both group learning and fast alignment significantly improve the classification accuracy except for the database with clinical subjects (average improvement: 2.12±1.88%). GALIA utilizes cyclic approximate joint diagonalization (AJD) to find a set of linear transformations, one for each domain, jointly aligning the feature vectors of all domains. Group learning achieves a many-to-many transfer learning without compromising the classification performance on non-clinical BCI data. Fast alignment further extends the group learning for any unseen domains, allowing a many-to-one transfer learning with the same properties. The former method creates a single machine learning model using data from previous subjects and/or sessions, whereas the latter exploits the trained model for an unseen domain requiring no further training of the classifier.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Algoritmos , Aprendizado de Máquina , Bases de Dados Factuais
3.
Brain Sci ; 13(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37190537

RESUMO

The understanding of tinnitus has always been elusive and is largely prevented by its intrinsic heterogeneity. To address this issue, scientific research has aimed at defining stable and easily identifiable subphenotypes of tinnitus. This would allow better disentangling the multiple underlying pathophysiological mechanisms of tinnitus. In this study, three-dimensionality reduction techniques and two clustering methods were benchmarked on a database of 2772 tinnitus patients in order to obtain a reliable segmentation of subphenotypes. In this database, tinnitus patients' endotypes (i.e., parts of a population with a condition with distinct underlying mechanisms) are reported when diagnosed by an ENT expert in tinnitus management. This partial labeling of the dataset enabled the design of an original semi-supervised framework. The objective was to perform a benchmark of different clustering methods to get as close as possible to the initial ENT expert endotypes. To do so, two metrics were used: a primary one, the quality of the separation of the endotypes already identified in the database, as well as a secondary one, the stability of the obtained clusterings. The relevance of the results was finally reviewed by two ENT experts in tinnitus management. A 20-cluster clustering was selected as the best-performing, the most-clinically relevant, and the most-stable through bootstrapping. This clustering used a T-SNE method as the dimensionality reduction technique and a k-means algorithm as the clustering method. The characteristics of this clustering are presented in this article.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37107791

RESUMO

(1) Background: Poor sleep and fragmented sleep are associated with several chronic conditions. Tinnitus is an auditory symptom that often negatively combines with poor sleep and has been associated with sleep impairment and sleep apnea. The relationship between tinnitus psychoacoustic characteristics and sleep is still poorly explored, notably for a particular subgroup of patients, for whom the perceived loudness of their tinnitus is highly modulated by sleep. (2) Methods: For this observational prospective study, 30 subjects with tinnitus were recruited, including 15 "sleep intermittent tinnitus" subjects, who had reported significant modulations of tinnitus loudness related to night sleep and naps, and a control group of 15 subjects displaying constant non-sleep-modulated tinnitus. The control group had matching age, gender, self-reported hearing loss grade and tinnitus impact on quality of life with the study group. All patients underwent a polysomnography (PSG) assessment for one complete night and then were asked to fill in a case report form, as well as a report of tinnitus loudness before and after the PSG. (3) Results: "Sleep Intermittent tinnitus" subjects had less Stage 3 sleep (p < 0.01), less Rapid-Eye Movement (REM) Sleep (p < 0.05) and more Stage 2 sleep (p < 0.05) in proportion and duration than subjects from the control group. In addition, in the "sleep Intermittent tinnitus" sample, a correlation was found between REM sleep duration and tinnitus overnight modulation (p < 0.05), as well as tinnitus impact on quality of life (p < 0.05). These correlations were not present in the control group. (4) Conclusions: This study suggests that among the tinnitus population, patients displaying sleep-modulated tinnitus have deteriorated sleep quality. Furthermore, REM sleep characteristics may play a role in overnight tinnitus modulation. Potential pathophysiological explanations accounting for this observation are hypothesized and discussed.


Assuntos
Sono REM , Zumbido , Humanos , Sono REM/fisiologia , Qualidade de Vida , Zumbido/etiologia , Estudos Prospectivos , Sono
5.
Front Hum Neurosci ; 16: 1049985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530202

RESUMO

Statistical variability of electroencephalography (EEG) between subjects and between sessions is a common problem faced in the field of Brain-Computer Interface (BCI). Such variability prevents the usage of pre-trained machine learning models and requires the use of a calibration for every new session. This paper presents a new transfer learning (TL) method that deals with this variability. This method aims to reduce calibration time and even improve accuracy of BCI systems by aligning EEG data from one subject to the other in the tangent space of the positive definite matrices Riemannian manifold. We tested the method on 18 BCI databases comprising a total of 349 subjects pertaining to three BCI paradigms, namely, event related potentials (ERP), motor imagery (MI), and steady state visually evoked potentials (SSVEP). We employ a support vector classifier for feature classification. The results demonstrate a significant improvement of classification accuracy, as compared to a classical training-test pipeline, in the case of the ERP paradigm, whereas for both the MI and SSVEP paradigm no deterioration of performance is observed. A global 2.7% accuracy improvement is obtained compared to a previously published Riemannian method, Riemannian Procrustes Analysis (RPA). Interestingly, tangent space alignment has an intrinsic ability to deal with transfer learning for sets of data that have different number of channels, naturally applying to inter-dataset transfer learning.

6.
Prog Brain Res ; 260: 167-185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33637216

RESUMO

BACKGROUND: Several clinical studies have shown that neurofeedback (NFB) has the potential to significantly improve the quality of life of patients complaining of chronic subjective tinnitus. Yet the clinical applicability of such a therapeutic approach in the everyday practice has not been tested so far. OBJECTIVE: This study aims at investigating the feasibility and efficacy of a semi-automated NFB intervention by means of a portable device that eventually could be used by the patients at home on an everyday basis. The duration of setup procedures is minimized through the use of a dry electrodes electroencephalography (EEG) headset and an automated user-interface. METHODS: We conducted a pilot clinical study (non-controlled, single arm, NCT03773926). According to a predetermined power calculation, a homogeneous population of 33 subjects with strict inclusion criteria was enrolled. After inclusion, all patients underwent 10 NFB sessions lasting 50min each, over a period of 5 weeks and a 3-month follow-up period. According to previous studies, the NFB training aimed at increasing the alpha-band power (8-12Hz) in the EEG power spectrum on the averaged signal of leads FC1, FC2, F3 and F4. Tinnitus handicap inventory (THI) was used as a primary outcome measure. Secondary outcome measures were the visual analog scales (VAS) and the change of the alpha-band power within sessions and across training. Time points of assessment were before intervention (T1), after intervention (T2) and at the 3-month follow-up (T3). RESULTS: Patient exhibited a clinically significant decrease of the THI score, with a 23% decrease (N=28) on average between T1 and T2 and a 31% decrease (N=25) between T1 and T3. A significant increase of the alpha-band power within sessions was observed. No significant increase of the alpha-band power across sessions was observed. For the 19 subjects where sufficient data were exploitable, a significant correlation was found between the evolution of the alpha-band training across sessions and the evolution of the THI between T1 and T2. The sessions were well tolerated and no adverse effect was reported. CONCLUSION: This study suggests that neurofeedback has potential to suit everyday clinical practice with the goal to significantly reduce tinnitus intrusiveness. The merits and limitations of this NFB procedure are discussed, especially with respect to the choice of EEG electrodes to ensure a good signal quality.


Assuntos
Neurorretroalimentação , Zumbido , Eletroencefalografia , Estudos de Viabilidade , Humanos , Projetos Piloto , Qualidade de Vida , Zumbido/terapia , Resultado do Tratamento
8.
IEEE Trans Biomed Eng ; 68(2): 673-684, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32746067

RESUMO

OBJECTIVE: We present a transfer learning method for datasets with different dimensionalities, coming from different experimental setups but representing the same physical phenomena. We focus on the case where the data points are symmetric positive definite (SPD) matrices describing the statistical behavior of EEG-based brain computer interfaces (BCI). METHOD: Our proposal uses a two-step procedure that transforms the data points so that they become matched in terms of dimensionality and statistical distribution. In the dimensionality matching step, we use isometric transformations to map each dataset into a common space without changing their geometric structures. The statistical matching is done using a domain adaptation technique adapted for the intrinsic geometry of the space where the datasets are defined. RESULTS: We illustrate our proposal on time series obtained from BCI systems with different experimental setups (e.g., different number of electrodes, different placement of electrodes). The results show that the proposed method can be used to transfer discriminative information between BCI recordings that, in principle, would be incompatible. CONCLUSION AND SIGNIFICANCE: Such findings pave the way to a new generation of BCI systems capable of reusing information and learning from several sources of data despite differences in their electrodes positioning.


Assuntos
Interfaces Cérebro-Computador , Eletrodos , Eletroencefalografia
9.
Eur Spine J ; 28(11): 2487-2501, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31254096

RESUMO

PURPOSE: Chronic low back pain (cLBP) affects a quarter of a population during its lifetime. The most severe cases include patients not responding to interventions such as 5-week-long in-hospital multi-disciplinary protocols. This document reports on a pilot study offering an alpha-phase synchronization (APS) brain rehabilitation intervention to a population of n = 16 multi-resistant cLBP patients. METHODS: The intervention consists of 20 sessions of highly controlled electroencephalography (EEG) APS operant conditioning (neurofeedback) paradigm delivered in the form of visual feedback. Visual analogue scale for pain, Dallas, Hamilton, and HAD were measured before, after, at 6-month and 12-month follow-up. Full-scalp EEG data were analyzed to study significant changes in the brain's electrical activity. RESULTS: The intervention showed a great and lasting response of most measured clinical scales. The clinical improvement was lasting beyond the 6-month follow-up endpoints. The EEG data confirm that patients did control (intra-session trends) and learned to better control (intersession trends) their APS neuromarker resulting in (nonsignificant) baseline changes in their resting state activity. Last and most significantly, the alpha-phase concentration (APC) neuromarker, specific to phase rather than amplitude, was found to correlate significantly with the reduction in clinical symptoms in a typical dose-response effect. CONCLUSION: This first experiment highlights the role of the APC neuromarker in relation to the nucleus accumbens activity and its role on nociception and the chronicity of pain. This study suggests APC rehabilitation could be used clinically for the most severe cases of cLBP. Its excellent safety profile and availability as a home-use intervention makes it a potentially disruptive tool in the context of nonsteroidal anti-inflammatory drugs and opioid abuses. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Dor Crônica/terapia , Eletroencefalografia , Dor Lombar/terapia , Neurorretroalimentação/métodos , Adolescente , Adulto , Condicionamento Operante , Feminino , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Escala Visual Analógica , Adulto Jovem
10.
Front Psychiatry ; 10: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833909

RESUMO

Meta-analyses have been extensively used to evaluate the efficacy of neurofeedback (NFB) treatment for Attention Deficit/Hyperactivity Disorder (ADHD) in children and adolescents. However, each meta-analysis published in the past decade has contradicted the methods and results from the previous one, thus making it difficult to determine a consensus of opinion on the effectiveness of NFB. This works brings continuity to the field by extending and discussing the last and much controversial meta-analysis by Cortese et al. (1). The extension comprises an update of that work including the latest control trials, which have since been published and, most importantly, offers a novel methodology. Specifically, NFB literature is characterized by a high technical and methodological heterogeneity, which partly explains the current lack of consensus on the efficacy of NFB. This work takes advantage of this by performing a Systematic Analysis of Biases (SAOB) in studies included in the previous meta-analysis. Our extended meta-analysis (k = 16 studies) confirmed the previously obtained results of effect sizes in favor of NFB efficacy as being significant when clinical scales of ADHD are rated by parents (non-blind, p-value = 0.0014), but not when they are rated by teachers (probably blind, p-value = 0.27). The effect size is significant according to both raters for the subset of studies meeting the definition of "standard NFB protocols" (parents' p-value = 0.0054; teachers' p-value = 0.043, k = 4). Following this, the SAOB performed on k = 33 trials identified three main factors that have an impact on NFB efficacy: first, a more intensive treatment, but not treatment duration, is associated with higher efficacy; second, teachers report a lower improvement compared to parents; third, using high-quality EEG equipment improves the effectiveness of the NFB treatment. The identification of biases relating to an appropriate technical implementation of NFB certainly supports the efficacy of NFB as an intervention. The data presented also suggest that the probably blind assessment of teachers may not be considered a good proxy for blind assessments, therefore stressing the need for studies with placebo-controlled intervention as well as carefully reported neuromarker changes in relation to clinical response.

11.
Sensors (Basel) ; 19(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709001

RESUMO

In biomedical signal processing, we often face the problem of artifacts that distort the original signals. This concerns also sleep recordings, such as EEG. Artifacts may severely affect or even make impossible visual inspection, as well as automatic processing. Many proposed methods concentrate on certain artifact types. Therefore, artifact-free data are often obtained after sequential application of different methods. Moreover, single-channel approaches must be applied to all channels alternately. The aim of this study is to develop a multichannel artifact detection method for multichannel sleep EEG capable of rejecting different artifact types at once. The inspiration for the study is gained from recent advances in the field of Riemannian geometry. The method we propose is tested on real datasets. The performance of the proposed method is measured by comparing detection results with the expert labeling as a reference and evaluated against a simpler method based on Riemannian geometry that has previously been proposed, as well as against the state-of-the-art method FASTER. The obtained results prove the effectiveness of the proposed method.


Assuntos
Eletroencefalografia/métodos , Sono/fisiologia , Algoritmos , Artefatos , Humanos , Processamento de Sinais Assistido por Computador
12.
IEEE Trans Neural Syst Rehabil Eng ; 27(2): 244-255, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30668501

RESUMO

Electroencephalographic (EEG) recordings are contaminated by instrumental, environmental, and biological artifacts, resulting in low signal-to-noise ratio. Artifact detection is a critical task for real-time applications where the signal is used to give a continuous feedback to the user. In these applications, it is therefore necessary to estimate online a signal quality index (SQI) in order to stop the feedback when the signal quality is unacceptable. In this paper, we introduce the Riemannian potato field (RPF) algorithm as such SQI. It is a generalization and extensionof theRiemannian potato, a previouslypublished real-time artifact detection algorithm, whose performance is degraded as the number of channels increases. The RPF overcomes this limitation by combining the outputs of several smaller potatoes into a unique SQI resulting in a higher sensitivity and specificity, regardless of the number of electrodes. We demonstrate these results on a clinical dataset totalizing more than 2200 h of EEG recorded at home, that is, in a non-controlled environment.


Assuntos
Algoritmos , Eletroencefalografia/estatística & dados numéricos , Processamento de Sinais Assistido por Computador , Adolescente , Artefatos , Criança , Eletrodos , Eletromiografia , Eletroculografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Sistemas On-Line , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
13.
IEEE Trans Biomed Eng ; 66(8): 2390-2401, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30596565

RESUMO

OBJECTIVE: This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user. METHOD: We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total). RESULTS: Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA. CONCLUSION AND SIGNIFICANCE: We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos
14.
IEEE Trans Biomed Eng ; 65(5): 1107-1116, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28841546

RESUMO

OBJECTIVE: This paper tackles the problem of transfer learning in the context of electroencephalogram (EEG)-based brain-computer interface (BCI) classification. In particular, the problems of cross-session and cross-subject classification are considered. These problems concern the ability to use data from previous sessions or from a database of past users to calibrate and initialize the classifier, allowing a calibration-less BCI mode of operation. METHODS: Data are represented using spatial covariance matrices of the EEG signals, exploiting the recent successful techniques based on the Riemannian geometry of the manifold of symmetric positive definite (SPD) matrices. Cross-session and cross-subject classification can be difficult, due to the many changes intervening between sessions and between subjects, including physiological, environmental, as well as instrumental changes. Here, we propose to affine transform the covariance matrices of every session/subject in order to center them with respect to a reference covariance matrix, making data from different sessions/subjects comparable. Then, classification is performed both using a standard minimum distance to mean classifier, and through a probabilistic classifier recently developed in the literature, based on a density function (mixture of Riemannian Gaussian distributions) defined on the SPD manifold. RESULTS: The improvements in terms of classification performances achieved by introducing the affine transformation are documented with the analysis of two BCI datasets. CONCLUSION AND SIGNIFICANCE: Hence, we make, through the affine transformation proposed, data from different sessions and subject comparable, providing a significant improvement in the BCI transfer learning problem.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Aprendizado de Máquina , Bases de Dados Factuais , Humanos , Modelos Teóricos
15.
Neurophysiol Clin ; 47(5-6): 371-391, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29169769

RESUMO

OBJECTIVE: Due to its high temporal resolution, electroencephalography (EEG) has become a broadly-used technology for real-time brain monitoring applications such as neurofeedback (NFB) and brain-computer interfaces (BCI). However, since EEG signals are prone to artifacts, denoising is a crucial step that enables adequate subsequent data processing and interpretation. The aim of this study is to compare manual denoising to unsupervised online denoising, which is essential to real-time applications. METHODS: Denoising EEG for real-time applications requires the implementation of unsupervised and online methods. In order to permit genericity, these methods should not rely on electrooculography (EOG) traces nor on temporal/spatial templates of the artifacts. Two blind source separation (BSS) methods are analyzed in this paper with the aim of automatically correcting online eye-blink artifacts: the algorithm for multiple unknown signals extraction (AMUSE) and the approximate joint diagonalization of Fourier cospectra (AJDC). The chosen gold standard is a manual review of the EEG database carried out retrospectively by a human operator. Comparison is carried out using the spectral properties of the continuous EEG and event-related potentials (ERP). RESULTS AND CONCLUSION: The AJDC algorithm addresses limitations observed in AMUSE and outperforms it. No statistical difference is found between the manual and automatic approaches on a database composed of 15 healthy individuals, paving the way for an automated, operator-independent, and real-time eye-blink correction technique.


Assuntos
Piscadela/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Interfaces Cérebro-Computador , Criança , Eletroencefalografia/métodos , Eletroculografia/métodos , Humanos , Pessoa de Meia-Idade , Adulto Jovem
17.
Front Hum Neurosci ; 10: 242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252641

RESUMO

Humans are fundamentally social and tend to create emergent organizations when interacting with each other; from dyads to families, small groups, large groups, societies, and civilizations. The study of the neuronal substrate of human social behavior is currently gaining momentum in the young field of social neuroscience. Hyperscanning is a neuroimaging technique by which we can study two or more brains simultaneously while participants interact with each other. The aim of this article is to discuss several factors that we deem important in designing hyperscanning experiments. We first review hyperscanning studies performed by means of electroencephalography (EEG) that have been relying on a continuous interaction paradigm. Then, we provide arguments for favoring ecological paradigms, for studying the emotional component of social interactions and for performing longitudinal studies, the last two aspects being largely neglected so far in the hyperscanning literature despite their paramount importance in social sciences. Based on these premises, we argue that music performance is a suitable experimental setting for hyperscanning and that for such studies EEG is an appropriate choice as neuroimaging modality.

18.
J Neurosci Methods ; 267: 74-88, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27090947

RESUMO

BACKGROUND: Already used at the incept of research on event-related potentials (ERP) over half a century ago, the arithmetic mean is still the benchmark for ERP estimation. Such estimation, however, requires a large number of sweeps and/or a careful rejection of artifacts affecting the electroencephalographic recording. NEW METHOD: In this article we propose a method for estimating ERPs as they are naturally contaminated by biological and instrumental artifacts. The proposed estimator makes use of multivariate spatio-temporal filtering to increase the signal-to-noise ratio. This approach integrates a number of relevant advances in ERP data analysis, such as single-sweep adaptive estimation of amplitude and latency and the use of multivariate regression to account for ERP overlapping in time. RESULTS: We illustrate the effectiveness of the proposed estimator analyzing a dataset comprising 24 subjects involving a visual odd-ball paradigm, without performing any artifact rejection. COMPARISON WITH EXISTING METHOD(S): As compared to the arithmetic average, a lower number of sweeps is needed. Furthermore, artifact rejection can be performed roughly using permissive automatic procedures. CONCLUSION: The proposed ensemble average estimator yields a reference companion to the arithmetic ensemble average estimation, suitable both in clinical and research settings. The method can be applied equally to event related fields (ERF) recorded by means of magnetoencephalography. In this article we describe all necessary methodological details to promote testing and comparison of this proposed method by peers. Furthermore, we release a MATLAB toolbox, a plug-in for the EEGLAB software suite and a stand-alone executable application.


Assuntos
Algoritmos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Artefatos , Interfaces Cérebro-Computador , Humanos , Análise Multivariada , Testes Neuropsicológicos , Fatores de Tempo , Percepção Visual/fisiologia
19.
Brain Behav ; 5(5): e00331, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25874164

RESUMO

INTRODUCTION: A fundamental question in phantom perception is determining whether the brain creates a network that represents the sound intensity of the auditory phantom as measured by tinnitus matching (in dB), or whether the phantom perception is actually only a representation of the subjectively perceived loudness. METHODS: In tinnitus patients, tinnitus loudness was tested in two ways, by a numeric rating scale for subjectively perceived loudness and a more objective tinnitus-matching test, albeit it is still a subjective measure. RESULTS: Passively matched tinnitus does not correlate with subjective numeric rating scale, and has no electrophysiological correlates. Subjective loudness, in a whole-brain analysis, is correlated with activity in the left anterior insula (alpha), the rostral/dorsal anterior cingulate cortex (beta), and the left parahippocampus (gamma). A ROI analysis finds correlations with the auditory cortex (high beta and gamma) as well. The theta band links gamma band activity in the auditory cortex and parahippocampus via theta-gamma nesting. CONCLUSIONS: Apparently the brain generates a network that represents subjectively perceived tinnitus loudness only, which is context dependent. The subjective loudness network consists of the anterior cingulate/insula, the parahippocampus, and the auditory cortex. The gamma band activity in the parahippocampus and the auditory cortex is functionally linked via theta-gamma nested lagged phase synchronization.


Assuntos
Encéfalo/fisiologia , Percepção Sonora/fisiologia , Zumbido/fisiopatologia , Adulto , Percepção Auditiva/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Front Behav Neurosci ; 8: 373, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374520

RESUMO

A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...