Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1572-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914968

RESUMO

NAF-1 is an important [2Fe-2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe-2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Šresolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe-2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Šresolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe-2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe-2S] cluster of NAF-1 in vivo.


Assuntos
Proteínas Ferro-Enxofre/genética , Mutação Puntual , Cristalografia por Raios X , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Eletroforese em Gel de Poliacrilamida Nativa , Espectrofotometria Ultravioleta
2.
Proc Natl Acad Sci U S A ; 111(14): 5177-82, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706857

RESUMO

Life requires orchestrated control of cell proliferation, cell maintenance, and cell death. Involved in these decisions are protein complexes that assimilate a variety of inputs that report on the status of the cell and lead to an output response. Among the proteins involved in this response are nutrient-deprivation autophagy factor-1 (NAF-1)- and Bcl-2. NAF-1 is a homodimeric member of the novel Fe-S protein NEET family, which binds two 2Fe-2S clusters. NAF-1 is an important partner for Bcl-2 at the endoplasmic reticulum to functionally antagonize Beclin 1-dependent autophagy [Chang NC, Nguyen M, Germain M, Shore GC (2010) EMBO J 29(3):606-618]. We used an integrated approach involving peptide array, deuterium exchange mass spectrometry (DXMS), and functional studies aided by the power of sufficient constraints from direct coupling analysis (DCA) to determine the dominant docked conformation of the NAF-1-Bcl-2 complex. NAF-1 binds to both the pro- and antiapoptotic regions (BH3 and BH4) of Bcl-2, as demonstrated by a nested protein fragment analysis in a peptide array and DXMS analysis. A combination of the solution studies together with a new application of DCA to the eukaryotic proteins NAF-1 and Bcl-2 provided sufficient constraints at amino acid resolution to predict the interaction surfaces and orientation of the protein-protein interactions involved in the docked structure. The specific integrated approach described in this paper provides the first structural information, to our knowledge, for future targeting of the NAF-1-Bcl-2 complex in the regulation of apoptosis/autophagy in cancer biology.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Humanos , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/química , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 110(36): 14676-81, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959881

RESUMO

Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Homeostase , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Immunoblotting , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Oligomicinas/farmacologia , Pioglitazona , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Tiazolidinedionas/farmacologia , Transplante Heterólogo , Carga Tumoral/genética
4.
PLoS One ; 8(5): e61202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717386

RESUMO

Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1's ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.


Assuntos
Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Ribonucleoproteínas/metabolismo , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia
5.
Plant Cell ; 24(5): 2139-54, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22562611

RESUMO

The NEET family is a newly discovered group of proteins involved in a diverse array of biological processes, including autophagy, apoptosis, aging, diabetes, and reactive oxygen homeostasis. They form a novel structure, the NEET fold, in which two protomers intertwine to form a two-domain motif, a cap, and a unique redox-active labile 2Fe-2S cluster binding domain. To accelerate the functional study of NEET proteins, as well as to examine whether they have an evolutionarily conserved role, we identified and characterized a plant NEET protein. Here, we show that the Arabidopsis thaliana At5g51720 protein (At-NEET) displays biochemical, structural, and biophysical characteristics of a NEET protein. Phenotypic characterization of At-NEET revealed a key role for this protein in plant development, senescence, reactive oxygen homeostasis, and Fe metabolism. A role in Fe metabolism was further supported by biochemical and cell biology studies of At-NEET in plant and mammalian cells, as well as mutational analysis of its cluster binding domain. Our findings support the hypothesis that NEET proteins have an ancient role in cells associated with Fe metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
6.
Proc Natl Acad Sci U S A ; 108(32): 13047-52, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788481

RESUMO

MitoNEET (mNT) is an outer mitochondrial membrane target of the thiazolidinedione diabetes drugs with a unique fold and a labile [2Fe-2S] cluster. The rare 1-His and 3-Cys coordination of mNT's [2Fe-2S] leads to cluster lability that is strongly dependent on the presence of the single histidine ligand (His87). These properties of mNT are similar to known [2Fe-2S] shuttle proteins. Here we investigated whether mNT is capable of cluster transfer to acceptor protein(s). Facile [2Fe-2S] cluster transfer is observed between oxidized mNT and apo-ferredoxin (a-Fd) using UV-VIS spectroscopy and native-PAGE, as well as with a mitochondrial iron detection assay in cells. The transfer is unidirectional, proceeds to completion, and occurs with a second-order-reaction rate that is comparable to known iron-sulfur transfer proteins. Mutagenesis of His87 with Cys (H87C) inhibits transfer of the [2Fe-2S] clusters to a-Fd. This inhibition is beyond that expected from increased cluster kinetic stability, as the equivalently stable Lys55 to Glu (K55E) mutation did not inhibit transfer. The H87C mutant also failed to transfer its iron to mitochondria in HEK293 cells. The diabetes drug pioglitazone inhibits iron transfer from WT mNT to mitochondria, indicating that pioglitazone affects a specific property, [2Fe-2S] cluster transfer, in the cellular environment. This finding is interesting in light of the role of iron overload in diabetes. Our findings suggest a likely role for mNT in [2Fe-2S] and/or iron transfer to acceptor proteins and support the idea that pioglitazone's antidiabetic mode of action may, in part, be to inhibit transfer of mNT's [2Fe-2S] cluster.


Assuntos
Ferredoxinas/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Ferredoxinas/química , Células HEK293 , Histidina/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Pioglitazona , Relação Estrutura-Atividade , Tiazolidinedionas/farmacologia
7.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 6): 516-23, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21636891

RESUMO

MitoNEET is the only identified Fe-S protein localized to the outer mitochondrial membrane and a 1.5 Šresolution X-ray analysis has revealed a unique structure [Paddock et al. (2007), Proc. Natl Acad. Sci. USA, 104, 14342-14347]. The 2Fe-2S cluster is bound with a 3Cys-1His coordination which defines a new class of 2Fe-2S proteins. The hallmark feature of this class is the single noncysteine ligand His87, which when replaced by Cys decreases the redox potential (E(m)) by ∼300 mV and increases the stability of the cluster by around sixfold. Unexpectedly, the pH dependence of the lifetime of the 2Fe-2S cluster remains the same as in the wild-type protein. Here, the crystal structure of H87C mitoNEET was determined to 1.7 Šresolution (R factor = 18%) to investigate the structural basis of the changes in the properties of the 2Fe-2S cluster. In comparison to the wild type, structural changes are localized to the immediate vicinity of the cluster-binding region. Despite the increased stability, Cys87 displays two distinct conformations, with distances of 2.3 and 3.2 Šbetween the S(γ) and the outer Fe of the 2Fe-2S cluster. In addition, Lys55 exhibits multiple conformations in the H87C mutant protein. The structure and distinct characteristics of the H87C mutant provide a framework for further studies investigating the effects of mutation on the properties of the 2Fe-2S cluster in this new class of proteins.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Mutação , Histidina/genética , Histidina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
8.
J Am Chem Soc ; 132(38): 13120-2, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20812736

RESUMO

MitoNEET is a newly discovered mitochondrial protein and a target of the TZD class of antidiabetes drugs. MitoNEET is homodimeric with each protomer binding a [2Fe-2S] center through a rare 3-Cys and 1-His coordination geometry. Both the fold and the coordination of the [2Fe-2S] centers suggest that it could have novel properties compared to other known [2Fe-2S] proteins. We tested the robustness of mitoNEET to mutation and the range over which the redox potential (E(M)) could be tuned. We found that the protein could tolerate an array of mutations that modified the E(M) of the [2Fe-2S] center over a range of ∼700 mV, which is the largest E(M) range engineered in an FeS protein and, importantly, spans the cellular redox range (+200 to -300 mV). These properties make mitoNEET potentially useful for both physiological studies and industrial applications as a stable, water-soluble, redox agent.


Assuntos
Proteínas Ferro-Enxofre/química , Modelos Moleculares , Oxirredução
9.
J Mol Biol ; 392(1): 143-53, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19580816

RESUMO

The endoplasmic reticulum protein Miner1 is essential for health and longevity. Mis-splicing of CISD2, which codes for Miner1, is causative in Wolfram Syndrome 2 (WFS2) resulting in early onset optic atrophy, diabetes mellitus, deafness and decreased lifespan. In knock-out studies, disruption of CISD2 leads to accelerated aging, blindness and muscle atrophy. In this work, we characterized the soluble region of human Miner1 and solved its crystal structure to a resolution of 2.1 A (R-factor=17%). Although originally annotated as a zinc finger, we show that Miner1 is a homodimer harboring two redox-active 2Fe-2S clusters, indicating for the first time an association of a redox-active FeS protein with WFS2. Each 2Fe-2S cluster is bound by a rare Cys(3)-His motif within a 17 amino acid segment. Miner1 is the first functionally different protein that shares the NEET fold with its recently identified paralog mitoNEET, an outer mitochondrial membrane protein. We report the first measurement of the redox potentials (E(m)) of Miner1 and mitoNEET, showing that they are proton-coupled with E(m) approximately 0 mV at pH 7.5. Changes in the pH sensitivity of their cluster stabilities are attributed to significant differences in the electrostatic distribution and surfaces between the two proteins. The structural and biophysical results are discussed in relation to possible roles of Miner1 in cellular Fe-S management and redox reactions.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas de Membrana/química , Síndrome de Wolfram/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Estrutura Terciária de Proteína
10.
Artigo em Inglês | MEDLINE | ID: mdl-19574633

RESUMO

A primary role for mitochondrial dysfunction is indicated in the pathogenesis of insulin resistance. A widely used drug for the treatment of type 2 diabetes is pioglitazone, a member of the thiazolidinedione class of molecules. MitoNEET, a 2Fe-2S outer mitochondrial membrane protein, binds pioglitazone [Colca et al. (2004), Am. J. Physiol. Endocrinol. Metab. 286, E252-E260]. The soluble domain of the human mitoNEET protein has been expressed C-terminal to the superfolder green fluorescent protein and the mitoNEET protein has been isolated. Comparison of the crystal structure of mitoNEET isolated from cleavage of the fusion protein (1.4 A resolution, R factor = 20.2%) with other solved structures shows that the CDGSH domains are superimposable, indicating proper assembly of mitoNEET. Furthermore, there is considerable flexibility in the position of the cytoplasmic tethering arms, resulting in two different conformations in the crystal structure. This flexibility affords multiple orientations on the outer mitochondrial membrane.


Assuntos
Citoplasma/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Cristalografia por Raios X , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Mitocondriais/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Espectrofotometria Ultravioleta , Homologia Estrutural de Proteína
11.
Biochemistry ; 48(22): 4747-52, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19388667

RESUMO

MitoNEET is a 2Fe-2S outer mitochondrial membrane protein that was initially identified as a target for anti-diabetic drugs. It exhibits a novel protein fold, and in contrast to other 2Fe-2S proteins such as Rieske proteins and ferredoxins, the metal clusters in the mitoNEET homodimer are each coordinated by one histidine residue and three cysteine residues. The interaction of the ligating His87 residue with the 2Fe-2S moiety is especially significant because previous studies have shown that replacement with Cys in the H87C mutant stabilizes the cluster against release. Here, we report the resonance Raman spectra of this naturally occurring Fe(2)S(2)(His)(Cys)(3) protein to assess local structural changes associated with cluster lability. Comparison of mitoNEET to its ferredoxin-like H87C mutant indicates that Raman peaks in the approximately 250-300 cm(-1) region of mitoNEET are influenced by the Fe-His87 moiety. Systematic pH-dependent resonance Raman spectral changes were observed in this spectral region for native mitoNEET but not the H87C mutant. The approximately 250-300 cm(-1) region of native mitoNEET is also sensitive to phosphate buffer. Thus, conditions that influence cluster release are shown here to concomitantly affect the resonance Raman spectrum in the region with Fe-His contribution. These results support the hypothesis that the Fe-N(His87) interaction is modulated within the physiological pH range, and this modulation may be critical to the function of mitoNEET.


Assuntos
Substituição de Aminoácidos/genética , Cisteína/química , Histidina/química , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Análise Espectral Raman , Cisteína/genética , Sistemas de Liberação de Medicamentos , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Prótons , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...