Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 57(10): 2058-2075, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27481893

RESUMO

Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.


Assuntos
Vias Biossintéticas/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Análise por Conglomerados , Epitopos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Glucanos/metabolismo , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
2.
J Exp Bot ; 59(2): 213-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18256051

RESUMO

Transgenic plants have facilitated our understanding of the functional roles of genes and the metabolic processes affected in plants. Recently, the Or gene was isolated from an orange cauliflower mutant and it was shown that the Or gene could serve as a novel genetic tool to enrich carotenoid content in transgenic potato tubers. An in-depth characterization of these Or transgenic lines is presented here. It was found that the Or transgene may facilitate the identification of potential rate-limiting step(s) of the carotenoid biosynthetic pathway. The Or transgenic tubers accumulated not only increased levels of carotenoids that normally are present in the controls, but also three additional metabolite intermediates of phytoene, phytofluene, and zeta-carotene, indicating that the desaturation steps became limiting following the expression of the Or transgene. Moreover, we observed that long-term cold storage greatly enhanced carotenoid content in the Or transgenic tubers to a level of 10-fold over controls. Expression of the Or transgene in the transgenic plants caused no dramatic changes in the transcript levels of the endogenous carotenoid biosynthetic genes, which is in agreement with the Or gene not directly controlling carotenoid biosynthesis. Microscope analysis revealed that the Or transgene conferred the formation of chromoplasts containing carotenoid sequestering structures in a heterologous system. Such structures were not observed in tubers of potato cultivars that accumulate high levels of carotenoids. Collectively, these results provide direct evidence demonstrating that the Or gene indeed controls chromoplast differentiation and that regulation of chromoplast formation can have a profound effect on carotenoid accumulation in plants.


Assuntos
Brassica/genética , Carotenoides/metabolismo , Tubérculos/metabolismo , Plastídeos/fisiologia , Solanum tuberosum/metabolismo , Carotenoides/biossíntese , Temperatura Baixa , Expressão Gênica , Genes de Plantas , Tubérculos/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/fisiologia
3.
Plant Cell ; 18(12): 3594-605, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172359

RESUMO

Despite recent progress in our understanding of carotenogenesis in plants, the mechanisms that govern overall carotenoid accumulation remain largely unknown. The Orange (Or) gene mutation in cauliflower (Brassica oleracea var botrytis) confers the accumulation of high levels of beta-carotene in various tissues normally devoid of carotenoids. Using positional cloning, we isolated the gene representing Or and verified it by functional complementation in wild-type cauliflower. Or encodes a plastid-associated protein containing a DnaJ Cys-rich domain. The Or gene mutation is due to the insertion of a long terminal repeat retrotransposon in the Or allele. Or appears to be plant specific and is highly conserved among divergent plant species. Analyses of the gene, the gene product, and the cytological effects of the Or transgene suggest that the functional role of Or is associated with a cellular process that triggers the differentiation of proplastids or other noncolored plastids into chromoplasts for carotenoid accumulation. Moreover, we demonstrate that Or can be used as a novel genetic tool to induce carotenoid accumulation in a major staple food crop. We show here that controlling the formation of chromoplasts is an important mechanism by which carotenoid accumulation is regulated in plants.


Assuntos
Brassica/genética , Brassica/metabolismo , Genes de Plantas , Proteínas de Choque Térmico HSP40/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , beta Caroteno/metabolismo , Alelos , Processamento Alternativo , Sequência de Aminoácidos , Cloroplastos/metabolismo , Clonagem Molecular , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Folhas de Planta/citologia , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...