Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Respir Crit Care Med ; 209(6): 683-692, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38055196

RESUMO

Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.


Assuntos
Asma , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Estudos Transversais , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/complicações , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/patologia , Pulmão , Asma/patologia , Microtomografia por Raio-X
2.
Environ Int ; 179: 108169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688811

RESUMO

Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air-liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gases , Humanos , Madeira , Aerossóis e Gotículas Respiratórios , Aldeídos , Material Particulado/toxicidade , Fumaça/efeitos adversos
3.
Eur Respir J ; 62(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652569

RESUMO

COPD is a devastating respiratory condition that manifests via persistent inflammation, emphysema development and small airway remodelling. Lung regeneration is defined as the ability of the lung to repair itself after injury by the proliferation and differentiation of progenitor cell populations, and becomes impaired in the COPD lung as a consequence of cell intrinsic epithelial stem cell defects and signals from the micro-environment. Although the loss of structural integrity and lung regenerative capacity are critical for disease progression, our understanding of the cellular players and molecular pathways that hamper regeneration in COPD remains limited. Intriguingly, despite being a key driver of COPD pathogenesis, the role of the immune system in regulating lung regenerative mechanisms is understudied. In this review, we summarise recent evidence on the contribution of immune cells to lung injury and regeneration. We focus on four main axes: 1) the mechanisms via which myeloid cells cause alveolar degradation; 2) the formation of tertiary lymphoid structures and the production of autoreactive antibodies; 3) the consequences of inefficient apoptotic cell removal; and 4) the effects of innate and adaptive immune cell signalling on alveolar epithelial proliferation and differentiation. We finally provide insight on how recent technological advances in omics technologies and human ex vivo lung models can delineate immune cell-epithelium cross-talk and expedite precision pro-regenerative approaches toward reprogramming the alveolar immune niche to treat COPD.

5.
Eur Respir J ; 61(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36549711

RESUMO

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Pulmão , Morte Celular , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R109-R119, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409022

RESUMO

The fundamental body functions that determine maximal O2 uptake (V̇o2max) have not been studied in Aqp5-/- mice (aquaporin 5, AQP5). We measured V̇o2max to globally assess these functions and then investigated why it was found altered in Aqp5-/- mice. V̇o2max was measured by the Helox technique, which elicits maximal metabolic rate by intense cold exposure of the animals. We found V̇o2max reduced in Aqp5-/- mice by 20%-30% compared with wild-type (WT) mice. As AQP5 has been implicated to act as a membrane channel for respiratory gases, we studied whether this is caused by the known lack of AQP5 in the alveolar epithelial membranes of Aqp5-/- mice. Lung function parameters as well as arterial O2 saturation were normal and identical between Aqp5-/- and WT mice, indicating that AQP5 does not contribute to pulmonary O2 exchange. The cause for the decreased V̇o2max thus might be found in decreased O2 consumption of an intensely O2-consuming peripheral organ such as activated brown adipose tissue (BAT). We found indeed that absence of AQP5 greatly reduces the amount of interscapular BAT formed in response to 4 wk of cold exposure, from 63% in WT to 25% in Aqp5-/- animals. We conclude that lack of AQP5 does not affect pulmonary O2 exchange, but greatly inhibits transformation of white to brown adipose tissue. As under cold exposure, BAT is a major source of the animals' heat production, reduction of BAT likely causes the decrease in V̇o2max under this condition.


Assuntos
Tecido Adiposo Marrom , Troca Gasosa Pulmonar , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Pulmão , Consumo de Oxigênio , Temperatura Baixa
7.
Sci Adv ; 8(12): eabj9949, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319981

RESUMO

Currently, there is no pharmacological treatment targeting defective tissue repair in chronic disease. Here, we used a transcriptomics-guided drug target discovery strategy using gene signatures of smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke, identifying druggable targets expressed in alveolar epithelial progenitors, of which we screened the function in lung organoids. We found several drug targets with regenerative potential, of which EP and IP prostanoid receptor ligands had the most profound therapeutic potential in restoring cigarette smoke-induced defects in alveolar epithelial progenitors in vitro and in vivo. Mechanistically, we found, using single-cell RNA sequencing analysis, that circadian clock and cell cycle/apoptosis signaling pathways were differentially expressed in alveolar epithelial progenitor cells in patients with COPD and in a relevant model of COPD, which was prevented by prostaglandin E2 or prostacyclin mimetics. We conclude that specific targeting of EP and IP receptors offers therapeutic potential for injury to repair in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Animais , Humanos , Ligantes , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Regeneração
8.
Nat Commun ; 13(1): 1303, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288557

RESUMO

Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.


Assuntos
Proteína-Arginina N-Metiltransferases , Doença Pulmonar Obstrutiva Crônica , Animais , Arginina/metabolismo , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Monócitos/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética
9.
Nat Commun ; 13(1): 318, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031603

RESUMO

Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.


Assuntos
Macrófagos Alveolares/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Elastase Pancreática/metabolismo , Enfisema Pulmonar/enzimologia , Canais de Potencial de Receptor Transitório/deficiência , Animais , Modelos Animais de Doenças , Endossomos/metabolismo , Feminino , Humanos , Pulmão/enzimologia , Metaloproteinase 12 da Matriz/genética , Camundongos , Camundongos Knockout , Elastase Pancreática/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Canais de Potencial de Receptor Transitório/genética
11.
Nat Med ; 27(3): 546-559, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33654293

RESUMO

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Assuntos
COVID-19/epidemiologia , COVID-19/genética , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/fisiologia , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/estatística & dados numéricos , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Catepsina L/genética , Catepsina L/metabolismo , Conjuntos de Dados como Assunto/estatística & dados numéricos , Demografia , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Análise de Sequência de RNA/métodos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Análise de Célula Única/métodos
13.
Nature ; 588(7836): 151-156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33149305

RESUMO

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/agonistas , Imunidade Adaptativa , Envelhecimento/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Enfisema/metabolismo , Feminino , Humanos , Imunidade Inata , Pulmão/metabolismo , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
Allergy ; 75(8): 1979-1990, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32064643

RESUMO

BACKGROUND: The use of antibiotics during pregnancy is associated with increased allergic asthma risk in the offspring, and given that approximately 25% of pregnant women are prescribed antibiotics, it is important to understand the mechanisms contributing to this phenomenon. Currently, there are no studies that directly test this association experimentally. Our objective was to develop a mouse model in which antibiotic treatment during pregnancy results in increased offspring asthma susceptibility. METHODS: Pregnant mice were treated daily from gestation day 8-17 with an oral solution of the antibiotic vancomycin, and three concentrations were tested. At weaning, offspring were subjected to an adjuvant-free experimental asthma protocol using ovalbumin as an allergen. The composition of the gut microbiome was determined in mothers and offspring with samples collected from five different time points; short-chain fatty acids were also analyzed in allergic offspring. RESULTS: We found that maternal antibiotic treatment during pregnancy was associated with increased offspring asthma severity in a dose-dependent manner. Furthermore, maternal vancomycin treatment during pregnancy caused marked changes in the gut microbiome composition in both mothers and pups at several different time points. The increased asthma severity and intestinal microbiome changes in pups were also associated with significantly decreased cecal short-chain fatty acid concentrations. CONCLUSION: Consistent with the "Developmental Origins Hypothesis," our results confirm that exposure to antibiotics during pregnancy shapes the neonatal intestinal environment and increases offspring allergic lung inflammation.


Assuntos
Asma , Hipersensibilidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Antibacterianos/efeitos adversos , Asma/tratamento farmacológico , Asma/etiologia , Feminino , Humanos , Camundongos , Ovalbumina , Gravidez
15.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L602-L614, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461302

RESUMO

Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disease. Although cigarette smoke was considered the main cause of development, the heterogeneous nature of the disease leaves it unclear whether other factors contribute to the predisposition or impaired regeneration response observed. Recently, epigenetic modification has emerged to be a key player in the pathogenesis of COPD. The addition of methyl groups to arginine residues in both histone and nonhistone proteins by protein arginine methyltransferases (PRMTs) is an important posttranslational epigenetic modification event regulating cellular proliferation, differentiation, apoptosis, and senescence. Here, we hypothesize that coactivator-associated arginine methyltransferase-1 (CARM1) regulates airway epithelial cell injury in COPD pathogenesis by controlling cellular senescence. Using the naphthalene (NA)-induced mouse model of airway epithelial damage, we demonstrate that loss of CC10-positive club cells is accompanied by a reduction in CARM1-expressing cells of the airway epithelium. Furthermore, Carm1 haploinsuffficent mice showed perturbed club cell regeneration following NA treatment. In addition, CARM1 reduction led to decreased numbers of antisenescent sirtuin 1-expressing cells accompanied by higher p21, p16, and ß-galactosidase-positive senescent cells in the mouse airway following NA treatment. Importantly, CARM1-silenced human bronchial epithelial cells showed impaired wound healing and higher ß-galactosidase activity. These results demonstrate that CARM1 contributes to airway repair and regeneration by regulating airway epithelial cell senescence.


Assuntos
Senescência Celular , Células Epiteliais/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Cicatrização , Idoso , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Naftalenos/toxicidade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo
16.
EBioMedicine ; 43: 562-575, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31060902

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of death worldwide with no curative therapy. A non-canonical Notch ligand, DNER, has been recently identified in GWAS to associate with COPD severity, but its function and contribution to COPD is unknown. METHODS: DNER localisation was assessed in lung tissue from healthy and COPD patients, and cigarette smoke (CS) exposed mice. Microarray analysis was performed on WT and DNER deficient M1 and M2 bone marrow-derived macrophages (BMDM), and gene set enrichment undertaken. WT and DNER deficient mice were exposed to CS or filtered air for 3 day and 2 months to assess IFNγ-expressing macrophages and emphysema development. Notch and NFKB active subunits were quantified in WT and DNER deficient LPS-treated and untreated BMDM. FINDINGS: Immunofluorescence staining revealed DNER localised to macrophages in lung tissue from COPD patients and mice. Human and murine macrophages showed enhanced DNER expression in response to inflammation. Interestingly, pro-inflammatory DNER deficient BMDMs exhibited impaired NICD1/NFKB dependent IFNγ signalling and reduced nuclear NICD1/NFKB translocation. Furthermore, decreased IFNγ production and Notch1 activation in recruited macrophages from CS exposed DNER deficient mice were observed, protecting against emphysema and lung dysfunction. INTERPRETATION: DNER is a novel protein induced in COPD patients and 6 months CS-exposed mice that regulates IFNγ secretion via non-canonical Notch in pro-inflammatory recruited macrophages. These results provide a new pathway involved in COPD immunity that could contribute to the discovery of innovative therapeutic targets. FUNDING: This work was supported from the Helmholtz Alliance 'Aging and Metabolic Programming, AMPro'.


Assuntos
Interferon gama/biossíntese , Macrófagos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Notch/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Humanos , Imunofenotipagem , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Monócitos/imunologia , Monócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Doença Pulmonar Obstrutiva Crônica/etiologia , Receptores de Superfície Celular/genética , Transdução de Sinais
17.
JCI Insight ; 4(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30728330

RESUMO

Lung transplantation (LTx) is the only therapeutic option for many patients with chronic lung disease. However, long-term survival after LTx is severely compromised by chronic rejection (chronic lung allograft dysfunction [CLAD]), which affects 50% of recipients after 5 years. The underlying mechanisms for CLAD are poorly understood, largely due to a lack of clinically relevant animal models, but lymphocytic bronchiolitis is an early sign of CLAD. Here, we report that lymphocytic bronchiolitis occurs early in a long-term murine orthotopic LTx model, based on a single mismatch (grafts from HLA-A2:B6-knockin donors transplanted into B6 recipients). Lymphocytic bronchiolitis is followed by formation of B cell-dependent lymphoid follicles that induce adjacent bronchial epithelial cell dysfunction in a spatiotemporal fashion. B cell deficiency using recipient µMT-/- mice prevented intrapulmonary lymphoid follicle formation and lymphocytic bronchiolitis. Importantly, selective inhibition of the follicle-organizing receptor EBI2, using genetic deletion or pharmacologic inhibition, prevented functional and histological deterioration of mismatched lung grafts. In sum, we provided what we believe to be a mouse model of chronic rejection and lymphocytic bronchiolitis after LTx and identified intrapulmonary lymphoid follicle formation as a target for pharmacological intervention of long-term allograft dysfunction after LTx.

18.
Data Brief ; 22: 647-657, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671513

RESUMO

This data is related to the research article entitled "Germinal center humoral autoimmunity independently mediates progression of allograft vasculopathy" (Harper et al., 2016) [2]. The data presented here focuses on the humoral autoimmune response triggered by transferred allogeneic CD4 T cells and includes details on: (a) the recipient splenic germinal center (GC) response; (b) augmentation of humoral autoimmunity and accelerated heart allograft rejection following transplantation from donors primed against recipient; (c) flow cytometric analysis of donor and recipient CD4 T cells for signature markers of T follicular helper cell differentiation; (d) in vitro donor endothelial cell migration in response to column purified autoantibody from recipient sera; (e) analysis of development of humoral responses in recipients following adoptive transfer of donor CD4 T cells and; (f) the development of humoral autoimmunity in mixed haematopoietic chimeric mice.

19.
J Autoimmun ; 98: 44-58, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30528910

RESUMO

The development of humoral autoimmunity following organ transplantation is increasingly recognised, but of uncertain significance. We examine whether autoimmunity contributes independently to allograft rejection. In a MHC class II-mismatched murine model of chronic humoral rejection, we report that effector antinuclear autoantibody responses were initiated upon graft-versus-host allorecognition of recipient B cells by donor CD4 T-cells transferred within heart allografts. Consequently, grafts were rejected more rapidly, and with markedly augmented autoantibody responses, upon transplantation of hearts from donors previously primed against recipient. Nevertheless, rejection was dependent upon recipient T follicular helper (TFH) cell differentiation and provision of cognate (peptide-specific) help for maintenance as long-lived GC reactions, which diversified to encompass responses against vimentin autoantigen. Heart grafts transplanted into stable donor/recipient mixed haematopoietic chimeras, or from parental strain donors into F1 recipients (neither of which can trigger host adaptive alloimmune responses), nevertheless provoked GC autoimmunity and were rejected chronically, with rejection similarly dependent upon host TFH cell differentiation. Thus, autoantibody responses contribute independently of host adaptive alloimmunity to graft rejection, but require host TFH cell differentiation to maintain long-lived GC responses. The demonstration that one population of helper CD4 T-cells initiates humoral autoimmunity, but that a second population of TFH cells is required for its maintenance as a GC reaction, has important implications for how autoimmune-related phenomena manifest.


Assuntos
Vasos Sanguíneos/patologia , Centro Germinativo/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , Linfócitos T/imunologia , Aloenxertos/imunologia , Animais , Autoantígenos/imunologia , Autoimunidade , Modelos Animais de Doenças , Progressão da Doença , Epitopos de Linfócito T/imunologia , Humanos , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
EMBO Mol Med ; 10(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674392

RESUMO

The development of chronic obstructive pulmonary disease (COPD) pathogenesis remains unclear, but emerging evidence supports a crucial role for inducible bronchus-associated lymphoid tissue (iBALT) in disease progression. Mechanisms underlying iBALT generation, particularly during chronic CS exposure, remain to be defined. Oxysterol metabolism of cholesterol is crucial to immune cell localization in secondary lymphoid tissue. Here, we demonstrate that oxysterols also critically regulate iBALT generation and the immune pathogenesis of COPD In both COPD patients and cigarette smoke (CS)-exposed mice, we identified significantly upregulated CH25H and CYP7B1 expression in airway epithelial cells, regulating CS-induced B-cell migration and iBALT formation. Mice deficient in CH25H or the oxysterol receptor EBI2 exhibited decreased iBALT and subsequent CS-induced emphysema. Further, inhibition of the oxysterol pathway using clotrimazole resolved iBALT formation and attenuated CS-induced emphysema in vivo therapeutically. Collectively, our studies are the first to mechanistically interrogate oxysterol-dependent iBALT formation in the pathogenesis of COPD, and identify a novel therapeutic target for the treatment of COPD and potentially other diseases driven by the generation of tertiary lymphoid organs.


Assuntos
Linfócitos B/metabolismo , Colesterol/metabolismo , Tecido Linfoide/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Animais , Brônquios/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Tecido Linfoide/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Fumaça , Nicotiana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...