Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(1): 187-198, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855522

RESUMO

Simulated military operational stress (SMOS) provides a useful model to better understand resilience in humans as the stress associated with caloric restriction, sleep deficits, and fatiguing exertion degrades physical and cognitive performance. Habitual physical activity may confer resilience against these stressors by promoting favorable use-dependent neuroplasticity, but it is unclear how physical activity, resilience, and corticospinal excitability (CSE) relate during SMOS. To examine associations between corticospinal excitability, physical activity, and physical performance during SMOS. Fifty-three service members (age: 26 ± 5 yr, 13 women) completed a 5-day and -night intervention composed of familiarization, baseline, SMOS (2 nights/days), and recovery days. During SMOS, participants performed rigorous physical and cognitive activities while receiving half of normal sleep (two 2-h blocks) and caloric requirements. Lower and upper limb CSE were determined with transcranial magnetic stimulation (TMS) stimulus-response curves. Self-reported resilience, physical activity, military-specific physical performance (TMT), and endocrine factors were compared in individuals with high (HIGH) and low CSE based on a median split of lower limb CSE at baseline. HIGH had greater physical activity and better TMT performance throughout SMOS. Both groups maintained physical performance despite substantial psychophysiological stress. Physical activity, resilience, and TMT performance were directly associated with lower limb CSE. Individual differences in physical activity coincide with lower (but not upper) limb CSE. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during SMOS. Future studies may use noninvasive neuromodulation to clarify the interplay among CSE, physical activity, and resilience and improve physical and cognitive performance.NEW & NOTEWORTHY We demonstrate that individual differences in physical activity levels coincide with lower limb corticospinal excitability. Such use-dependent corticospinal excitability directly relates to resilience and physical performance during a 5-day simulation of military operational stress with caloric restriction, sleep restriction and disruption, and heavy physical and cognitive exertion.


Assuntos
Militares , Córtex Motor , Adulto , Potencial Evocado Motor , Feminino , Humanos , Desempenho Físico Funcional , Tratos Piramidais , Estimulação Magnética Transcraniana , Adulto Jovem
2.
Brain Res ; 1761: 147395, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33662340

RESUMO

Transcranial magnetic stimulation (TMS) is increasingly used to examine lower extremity corticospinal excitability (CSE) in clinical and sports research. Because CSE is task-specific, there is growing emphasis on the use of ecological tasks. Nevertheless, the comparative reliability of CSE measurements during established (e.g. knee extensions; KE) and more recent ecological (e.g. squats; SQT) lower extremity tasks has received less attention. The aim of this study was to compare the test-retest reliability of CSE, force, and muscle activity (EMG) during isometric SQT and KE. 19 right-footed men (age: 25 ± 5 yrs) with similar fitness and body composition performed SQT (N = 7) or KE (N = 12) on two consecutive days. Force and EMG were recorded during maximum voluntary isometric contractions (MVC). Corticospinal excitability was determined in the dominant leg during light (15% MVC) contractions based on motor evoked potential (MEP) stimulus-response-curves (SRC). Test-retest reliability, absolute agreement, and consistency were determined for force, EMG, and SRC MEP maximum (MEPMAX) and rising phase midpoint (V50). As a secondary analysis, all outcomes were compared between groups with mixed-methods ANCOVAs (Task × Time, covariate: body-fat-percentage). Compared with SQT, KE displayed better test-retest reliability and agreement for MEPMAX whereas V50, force, and EMG were similarly reliable. Force (p = 0.01) and MEPMAX (p = 0.02) were also greater during KE despite a similar V50 (p = 0.11). Differences in test-retest reliability, absolute agreement, and between-group comparisons highlight the need to carefully select lower limb TMS assessment tasks and encourage future efforts to balance ecological validity with statistical sensitivity.

3.
Exp Brain Res ; 239(4): 1099-1110, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33547521

RESUMO

INTRODUCTION: The double-cone coil (D-CONE) is frequently used in transcranial magnetic stimulation (TMS) experiments that target the motor cortex (M1) lower-limb representation. Anecdotal evidence and modeling studies have shed light on the off-target effects of D-CONE TMS but the physiological extent remains undetermined. PURPOSE: To characterize the off-target effects of D-CONE TMS based on bilateral corticospinal responses in the legs and hands. METHODS: Thirty (N = 30) participants (9 women, age: 26 ± 5yrs) completed a stimulus-response curve procedure with D-CONE TMS applied to the dominant vastus lateralis (cVL) and motor-evoked potentials (MEPs) recorded in each active VL and resting first dorsal interosseous (FDI). As a positive control (CON), the dominant FDI was directly targeted with a figure-of-eight coil and MEPs were similarly recorded in each active FDI and resting VL. MEPMAX, V50 and MEP latencies were compared with repeated-measures ANOVAs or mixed-effects analysis and Bonferroni-corrected pairwise comparisons. RESULTS: Off-target responses were evident in all muscles, with similar MEPMAX in the target (cVL) and off-target (iVL) leg (p = 0.99) and cFDI compared with CON (p = 0.99). cFDI and CON MEPMAX were greater than iFDI (p < 0.01). A main effect of target (p < 0.001) indicated that latencies were shorter with CON but similar in all muscles with D-CONE. DISCUSSION: Concurrent MEP recordings in bilateral upper- and lower-extremity muscles confirm that lower-limb D-CONE TMS produces substantial distance-dependent off-target effects. In addition to monitoring corticospinal responses in off-target muscles to improve targeting accuracy in real-time, future studies may incorporate off-target information into statistical models post-hoc.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Pré-Escolar , Potencial Evocado Motor , Feminino , Mãos , Humanos , Extremidade Inferior , Músculo Esquelético
4.
Clin J Sport Med ; 22(6): 462-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23047728

RESUMO

OBJECTIVE: To describe injuries and illnesses presented and profile mood states and sleep patterns during a desert environment ultramarathon. DESIGN: Prospective study gathering data on mood states and injury patterns. SETTING: : Gobi Desert, Mongolia. PARTICIPANTS: Eleven male competitors (mean mass, 83.7 ± 7.1 kg; body mass index, 24 ± 1.79 kg/m; age, 33 ± 11 years). INTERVENTIONS: Injuries were clinically assessed and recorded each day. MAIN OUTCOME MEASURES: Mood state was assessed using the Brunel Mood Scale. RESULTS: All subjects presented with abrasion injuries, dehydration, and heat stress. Vigor decreased over the first 6 days while fatigue increased (P < 0.05). Fatigue and vigor recovered on the final morning. The observed recovery was set against increasing levels of depression, tension, and confusion, which peaked at days 5/6 but returned to day 1 levels on the 7th day morning (P < 0.05). Mean sleep duration (6:17 ± 00:48 hours:minutes; lowest on day 6, 4:43 ± 01:54 hours:minutes) did not vary significantly across the 7 days but did correlate with mood alterations (P < 0.05). Increased anger and fatigue correlated strongly with sleep disruption (r = 0.736 and 0.768, respectively). Vigor and depression displayed a moderately strong correlation to sleep (r = 0.564 and -0.530). CONCLUSIONS: Injury patterns were similar to those reported in other adventure/ultradistance events. Consistent with previous work, data show increased fatigue and reduced vigor in response to an arduous physical challenge.


Assuntos
Afeto/fisiologia , Clima Desértico/efeitos adversos , Corrida/lesões , Corrida/psicologia , Adulto , Ira/fisiologia , Confusão/fisiopatologia , Confusão/psicologia , Depressão/fisiopatologia , Depressão/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Mongólia , Fadiga Muscular/fisiologia , Estudos Prospectivos , Sono/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Adulto Jovem
5.
Scand J Med Sci Sports ; 20(1): 128-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19486479

RESUMO

The purpose of this study was to determine accurately the magnitude and changes of intra-cycle velocity fluctuation (Vfluc), maximum (Vmax) and minimum velocity (Vmin) of the center of mass during a maximum 200 m frontcrawl swim, and to examine whether they are associated with performance. Performance was indicated by the mean velocity (Vmean) of the stroke cycle (SC) in the swimming direction. The relative Vfluc, Vmax and Vmin were also calculated as a percentage of Vmean, while Vfluc was calculated for all three directions. Eleven male swimmers of national/international level participated in this study and their performance was recorded with four below- and two above-water-synchronized cameras. Four SCs were analyzed for the 200 m swim (one for each 50 m). Anthropometric data were calculated by the elliptical zone method. Vmean generally decreased throughout the test. Vmax and Vmin were positively correlated to performance and were significantly higher in SC1 than in the other SCs. However, the relative Vmax and Vmin values were remarkably consistent during the 200 m and not associated with performance. Despite the noteworthy magnitude of Vfluc in all directions, they were in general not correlated with performance and there were no significant changes during the test.


Assuntos
Movimento/fisiologia , Natação/fisiologia , Aceleração , Adolescente , Braço/fisiologia , Fenômenos Biomecânicos , Quadril/fisiologia , Humanos , Perna (Membro)/fisiologia , Masculino , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...