Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Glycobiology ; 32(5): 391-403, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34972864

RESUMO

The heat-labile enterotoxins of Escherichia coli and cholera toxin of Vibrio cholerae are related in structure and function. Each of these oligomeric toxins is comprised of one A polypeptide and five B polypeptides. The B-subunits bind to gangliosides, which are followed by uptake into the intoxicated cell and activation of the host's adenylate cyclase by the A-subunits. There are two antigenically distinct groups of these toxins. Group I includes cholera toxin and type I heat-labile enterotoxin of E. coli; group II contains the type II heat-labile enterotoxins of E. coli. Three variants of type II toxins, designated LT-IIa, LT-IIb and LT-IIc have been described. Earlier studies revealed the crystalline structure of LT-IIb. Herein the carbohydrate binding specificity of LT-IIc B-subunits was investigated by glycosphingolipid binding studies on thin-layer chromatograms and in microtiter wells. Binding studies using a large variety of glycosphingolipids showed that LT-IIc binds with high affinity to gangliosides with a terminal Neu5Acα3Gal or Neu5Gcα3Gal, e.g. the gangliosides GM3, GD1a and Neu5Acα3-/Neu5Gcα3--neolactotetraosylceramide and Neu5Acα3-/Neu5Gcα3-neolactohexaosylceramide. The crystal structure of LT-IIc B-subunits alone and with bound LSTd/sialyl-lacto-N-neotetraose d pentasaccharide uncovered the molecular basis of the ganglioside recognition. These studies revealed common and unique functional structures of the type II family of heat-labile enterotoxins.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxina da Cólera/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/metabolismo , Temperatura Alta
2.
Expert Rev Vaccines ; 20(8): 975-987, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34148503

RESUMO

Introduction: Heat-labile enterotoxins (HLTs) and their cognate ganglioside receptors have been extensively studied because of their therapeutic potential. Gangliosides play arole in modulating effector cells of the immune system, and HLTs provide a novel means for stimulating ganglioside-mediated responses in immunocompetent cells.Areas covered: To evaluate the mechanisms of HLT adjuvanticity, a systemic literature review was performed using relevant keyword searches of the PubMed database, accessing literature published as recently as late 2020. Since HLTs bind to specific ganglioside receptors on immunocytes, they can act as regulators via stimulation or tapering of immune responses from associated signal transduction events. Binding of HLTs to gangliosides can increase proliferation of T-cells, increase cytokine release, augment mucosal/systemic antibody responses, and increase the effectiveness of antigen presenting cells. Subunit components also independently stimulate certain immune responses. Mutant forms of HLTs have potent immunomodulatory effects without the toxicity associated with holotoxins.Expert opinion: HLTs have been the subject of abundant research exploring their use as vaccine adjuvants, in the treatment of autoimmune conditions, in cancer therapy, and for weight loss, proving that these molecules are promising tools in the field of immunotherapy.


Assuntos
Enterotoxinas , Temperatura Alta , Formação de Anticorpos , Humanos , Fatores Imunológicos , Imunoterapia
3.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587795

RESUMO

Triple negative breast cancer (TNBC) remains a serious health problem with poor prognosis and limited therapeutic options. To discover novel approaches to treat TNBC, we screened cholera toxin (CT) and the members of the bacterial type II heat-labile enterotoxin family (LT-IIa, LT-IIb, and LT-IIc) for cytotoxicity in TNBC cells. Only LT-IIc significantly reduced viability of the TNBC cell lines BT549 and MDA-MB-231 (IC50 = 82.32 nM). LT-IIc had no significant cytotoxic effect on MCF10A (IC50 = 2600 nM), a non-tumorigenic breast epithelial cell line, and minimal effects on MCF7 and T47D, ER⁺ cells, or SKBR-3 cells, HER2⁺ cells. LT-IIc stimulated autophagy through inhibition of the mTOR pathway, while simultaneously inhibiting autophagic progression, as seen by accumulation of LC3B-II and p62. Morphologically, LT-IIc induced the formation of enlarged LAMP2+ autolysosomes, which was blocked by co-treatment with bafilomycin A1. LT-IIc induced apoptosis as demonstrated by the increase in caspase 3/7 activity and Annexin V staining. Co-treatment with necrostatin-1, however, demonstrated that the lethal response of LT-IIc is elicited, in part, by concomitant induction of necroptosis. Knockdown of ATG-5 failed to rescue LT-IIc-induced cytotoxicity, suggesting LT-IIc can exert its cytotoxic effects downstream or independently of autophagophore initiation. Collectively, these experiments demonstrate that LT-IIc acts bifunctionally, inducing autophagy, while simultaneously blocking autolysosomal progression in TNBC cells, inducing a specific cytotoxicity in this breast cancer subtype.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Enterotoxinas/toxicidade , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Temperatura Alta , Humanos , Imidazóis/metabolismo , Indóis/metabolismo , Lisossomos/metabolismo , Necrose , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
J AIDS Clin Res ; 8(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29226013

RESUMO

Despite advancements in our understanding of HIV-1 pathogenesis, critical virus components for immunity, vaccines trials, and drugs development, challenges remain in the fight against HIV-1. Of great importance is the inhibitory function of microbicidal cell penetrating peptides and bacterial toxins that interfere with production and neutralize infection of HIV-1 particles. We demonstrate that the neutralizing activity of a cationic 18 amino acids peptide, is similar to a broadly neutralizing human antibody, and inhibits production of two HIV-1 strains in human cell lines. Pretreatment of cells with bacterial toxins or toxoids derived from enterotoxigenic E. coli, boost subsequent activity of the peptide against HIV-1, to inhibit simultaneously production and infection. The synthetic peptide crosses the cell membrane into the cytoplasm and nucleus. In vitro analysis of a possible target for this peptide revealed specific binding to recombinant HIV-1 gag p24. This is the first demonstration of a synergy between bacterial toxins and a cell-penetrating peptide against HIV-1.

5.
J Microbiol Biotechnol ; 27(4): 709-717, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28144014

RESUMO

Mucosal tissues are the initial site through which most pathogens invade. As such, vaccines and adjuvants that modulate mucosal immune functions have emerged as important agents for disease prevention. Herein, we investigated the immunomodulatory mechanisms of the B subunit of Escherichia coli heat-labile enterotoxin type IIa (LT-IIa-B5), a potent non-toxic mucosal adjuvant. Alternations in gene expression in response to LT-IIa-B5 were identified using a genome-wide transcriptional microarray that focused on dendritic cells (DC), a type of cell that broadly orchestrates adaptive and innate immune responses. We found that LT-IIa-B5 enhanced the homing capacity of DC into the lymph nodes and selectively regulated transcription of pro-inflammatory cytokines, chemokines, and cytokine receptors. These data are consistent with a model in which directional activation and differentiation of immune cells by LT-IIa-B5 serve as a critical mechanism whereby this potent adjuvant amplifies mucosal immunity to co-administered antigens.


Assuntos
Adjuvantes Imunológicos , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Enterotoxinas/imunologia , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/farmacologia , Imunidade nas Mucosas , Administração Intranasal , Animais , Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Toxinas Bacterianas/genética , Antígenos CD40/imunologia , Movimento Celular/imunologia , Quimiocinas/biossíntese , Citocinas/biossíntese , Enterotoxinas/genética , Enterotoxinas/farmacologia , Escherichia coli , Proteínas de Escherichia coli/genética , Feminino , Regulação da Expressão Gênica , Imunidade Inata , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Citocinas/biossíntese
6.
J Antimicrob Chemother ; 72(1): 153-165, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634916

RESUMO

OBJECTIVES: The pharmacodynamics of polymyxin/carbapenem combinations against carbapenem-resistant Acinetobacter baumannii (CRAB) are largely unknown. Our objective was to determine whether intensified meropenem regimens in combination with polymyxin B enhance killing and resistance suppression of CRAB. METHODS: Time-kill experiments for meropenem and polymyxin B combinations were conducted against three polymyxin B-susceptible (MIC of polymyxin B = 0.5 mg/L) CRAB strains with varying meropenem MICs (ATCC 19606, N16870 and 03-149-1; MIC of meropenem = 4, 16 and 64 mg/L, respectively) at 108 cfu/mL. A hollow-fibre infection model was then used to simulate humanized regimens of polymyxin B and meropenem (2, 4, 6 and 8 g prolonged infusions every 8 h) versus N16870 at 108 cfu/mL over 14 days. New mathematical mechanism-based models were developed using S-ADAPT. RESULTS: Time-kill experiments were well described by the mathematical mechanism-based models, with the presence of polymyxin B drastically decreasing the meropenem concentration needed for half-maximal activity against meropenem-resistant populations from 438 to 82.1 (ATCC 19606), 158 to 93.6 (N16870) and 433 to 76.0 mg/L (03-149-1). The maximum killing effect of combination treatment was similar among all three strains despite divergent meropenem MIC values (Emax = 2.13, 2.08 and 2.15; MIC of meropenem = 4, 16 and 64 mg/L, respectively). Escalating the dose of meropenem in hollow-fibre combination regimens from 2 g every 8 h to 8 g every 8 h resulted in killing that progressed from a >2.5 log10 cfu/mL reduction with regrowth by 72 h (2 g every 8 h) to complete eradication by 336 h (8 g every 8 h). CONCLUSION: Intensified meropenem dosing in combination with polymyxin B may offer a unique strategy to kill CRAB irrespective of the meropenem MIC.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Polimixina B/farmacologia , Tienamicinas/farmacologia , Resistência beta-Lactâmica , Antibacterianos/administração & dosagem , Humanos , Meropeném , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Polimixina B/administração & dosagem , Tienamicinas/administração & dosagem
7.
Nat Commun ; 7: 13894, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004802

RESUMO

The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40-CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Vacinas contra a Tuberculose/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Antígenos CD/metabolismo , Feminino , Humanos , Cadeias alfa de Integrinas/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/prevenção & controle
8.
J Leukoc Biol ; 100(2): 361-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27059843

RESUMO

LT-IIb, a type II heat-labile enterotoxin produced by Escherichia coli, is a potent intradermal adjuvant that enhances immune responses to coadministered antigens. Although the immune mechanisms that promote this augmented immune response have not been well defined, prior intradermal immunization experiments suggested that early cellular and immunomodulatory events at the site of immunization modulated the augmentation of antigen-specific immune responses by LT-IIb. To investigate that hypothesis, mice were intradermally immunized with a recombinant ricin vaccine, a prospective toxin subunit antigen, in the presence and absence of LT-IIb. Analysis of tissue-fluid collection, coupled with histologic sections from the site of intradermal immunization, revealed that a single dose of LT-IIb induced local production of interleukin 6 and promoted a regional infiltration of neutrophils. The adjuvant effects of LT-IIb were abrogated in interleukin 6-deficient mice and when mice were depleted of neutrophils by pretreatment with anti-Ly6G. Overall, these data firmly demonstrated that LT-IIb, when used as an intradermal adjuvant, recruits neutrophils and is a potent rapid inducer of interleukin 6.


Assuntos
Toxinas Bacterianas/administração & dosagem , Enterotoxinas/administração & dosagem , Proteínas de Escherichia coli/administração & dosagem , Imunidade Humoral/imunologia , Inflamação/imunologia , Interleucina-6/fisiologia , Neutrófilos/imunologia , Dermatopatias/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Feminino , Imunidade Humoral/efeitos dos fármacos , Imunização , Inflamação/metabolismo , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Dermatopatias/metabolismo , Dermatopatias/prevenção & controle , Vacinas/administração & dosagem
9.
Infect Immun ; 84(6): 1693-1703, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001538

RESUMO

Streptococcus pneumoniae commonly inhabits the nasopharynx as a member of the commensal biofilm. Infection with respiratory viruses, such as influenza A virus, induces commensal S. pneumoniae to disseminate beyond the nasopharynx and to elicit severe infections of the middle ears, lungs, and blood that are associated with high rates of morbidity and mortality. Current preventive strategies, including the polysaccharide conjugate vaccines, aim to eliminate asymptomatic carriage with vaccine-type pneumococci. However, this has resulted in serotype replacement with, so far, less fit pneumococcal strains, which has changed the nasopharyngeal flora, opening the niche for entry of other virulent pathogens (e.g., Streptococcus pyogenes, Staphylococcus aureus, and potentially Haemophilus influenzae). The long-term effects of these changes are unknown. Here, we present an attractive, alternative preventive approach where we subvert virus-induced pneumococcal disease without interfering with commensal colonization, thus specifically targeting disease-causing organisms. In that regard, pneumococcal surface protein A (PspA), a major surface protein of pneumococci, is a promising vaccine target. Intradermal (i.d.) immunization of mice with recombinant PspA in combination with LT-IIb(T13I), a novel i.d. adjuvant of the type II heat-labile enterotoxin family, elicited strong systemic PspA-specific IgG responses without inducing mucosal anti-PspA IgA responses. This response protected mice from otitis media, pneumonia, and septicemia and averted the cytokine storm associated with septic infection but had no effect on asymptomatic colonization. Our results firmly demonstrated that this immunization strategy against virally induced pneumococcal disease can be conferred without disturbing the desirable preexisting commensal colonization of the nasopharynx.


Assuntos
Anticorpos Antibacterianos/biossíntese , Proteínas de Bactérias/imunologia , Vacinas Pneumocócicas/administração & dosagem , Pneumonia Pneumocócica/prevenção & controle , Streptococcus pneumoniae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Administração Intranasal , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Enterotoxinas/administração & dosagem , Enterotoxinas/genética , Enterotoxinas/imunologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Feminino , Expressão Gênica , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunoglobulina G/biossíntese , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/efeitos dos fármacos , Nasofaringe/imunologia , Nasofaringe/microbiologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/mortalidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Análise de Sobrevida , Simbiose/efeitos dos fármacos , Vacinas Conjugadas
10.
J Clin Cell Immunol ; 7(6)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28149670

RESUMO

Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.

11.
PLoS One ; 10(11): e0142942, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565800

RESUMO

Poor immune responses elicited by vaccine antigens can be enhanced by the use of appropriate adjuvants. Type II heat-labile enterotoxins (HLT) produced by Escherichia coli are extremely potent adjuvants that augment both humoral and cellular immunity to co-administered antigens. Recent findings demonstrate that LT-IIb and LT-IIc, two type II HLT adjuvants, exhibit potent, yet distinguishable CD8(+) T cell adjuvant properties. While LT-IIc elicits a robust and rapid response at one week after administration, LT-IIb engenders a more gradual and slower expansion of antigen-specific CD8(+) T cells that correlates with improved immunity. The variations in immune effects elicited by the HLT adjuvants have been generally attributed to their highly divergent B subunits that mediate binding to various gangliosides on cell surfaces. Yet, HLT adjuvants with point mutations in the B subunit that significantly alter ganglioside binding retain similar adjuvant functions. Therefore, the contribution of the B subunits to adjuvanticity remains unclear. To investigate the influence of the B subunits on the enhancement of immune responses by LT-IIb and LT-IIc, chimeric HLT were engineered in which the B subunits of the two adjuvants were exchanged. Comparing the immune potentiating characteristics of both native and chimeric HLT adjuvants, it was found that not all the adjuvant characteristics of the HLT adjuvants were modulated by the respective B subunits. Specifically, the differences in the CD8(+) T cell kinetics and protective responses elicited by LT-IIb and LT-IIc did indeed followed their respective B subunits. However, induction of IL-1 from macrophages and the capacity to intoxicate cells in a mouse Y1 adrenal cell bioassay did not correlate with the B subunits. Therefore, it is likely that additional factors other than the B subunits contribute to the effects elicited by the HLT adjuvants.


Assuntos
Toxinas Bacterianas/química , Linfócitos T CD8-Positivos/imunologia , Enterotoxinas/química , Proteínas de Escherichia coli/química , Adjuvantes Imunológicos , Glândulas Suprarrenais/citologia , Animais , Bioensaio , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Feminino , Citometria de Fluxo , Gangliosídeos/química , Sistema Imunitário , Listeria monocytogenes , Macrófagos/metabolismo , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Linfócitos T/citologia
12.
Clin Vaccine Immunol ; 22(12): 1285-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26491037

RESUMO

Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc. The HLTs were tested with low and high doses of antigen and were assessed for their abilities to stimulate antigen-specific serum IgG titers, ricin toxin-neutralizing activity (TNA), and protective immunity. We found that all four HLTs tested were effective adjuvants when coadministered with RiVax or RVEc. LT-IIa was of particular interest because as little as 0.03 µg when coadministered with RiVax or RVEc proved effective at augmenting ricin toxin-specific serum antibody titers with nominal evidence of local inflammation. Collectively, these results justify the need for further studies into the mechanism(s) underlying LT-IIa adjuvant activity, with the long-term goal of evaluating LT-IIa's activity in humans.


Assuntos
Adjuvantes Imunológicos , Antígenos de Bactérias/administração & dosagem , Toxinas Bacterianas/imunologia , Enterotoxinas/imunologia , Proteínas de Escherichia coli/imunologia , Imunoglobulina G/sangue , Ricina/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/administração & dosagem , Escherichia coli Enterotoxigênica/química , Enterotoxinas/administração & dosagem , Proteínas de Escherichia coli/administração & dosagem , Injeções Intradérmicas , Camundongos , Ricina/química , Vacinas/administração & dosagem
13.
Cell Immunol ; 295(2): 150-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25880107

RESUMO

The B-subunits of heat-labile enterotoxins LT-I (LT-IB) and LT-IIa (LT-IIaB) are strong adjuvants that bind to cell-surface receptors, including gangliosides G(M1) and GD1b, respectively. LT-IIaB also binds TLR-2. We demonstrate for the first time that co-incubation with the B-subunits induces significant clustering of B cells after only 4h, and B and T cells in 24h. Clustering was dependent on intact B-subunits, but not on the TLR-2 binding activity of LT-IIaB, indicating it was ganglioside-mediated. Treatment of B cells with LT-IB, a mixture of LT-IB+LT-IIaB, but not LT-IIaB alone, caused a delay in T cell division following ovalbumin endocytosis. B cell receptor-mediated uptake in presence of each treatment caused an arrest, but with increased production of IL-2. Further, treatments differentially increased the proportion of macrophages expressing MHC class-II. These results highlight the outcomes of interplay between signals involving different receptors and implicate a novel mechanism of adjuvanticity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Toxinas Bacterianas/imunologia , Enterotoxinas/imunologia , Proteínas de Escherichia coli/imunologia , Ovalbumina/imunologia , Receptores de Superfície Celular/imunologia , Linfócitos T/imunologia , Animais , Ciclo Celular/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-2/imunologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
14.
PLoS One ; 9(12): e113978, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25536061

RESUMO

Vaccinations are extremely effective at combating infectious diseases. Many conserved antigen (Ag) targets, however, are poorly immunogenic. Protein subunit vaccines frequently elicit only humoral immune responses and fail to confer protection against serious intracellular pathogens. These barriers to vaccine development are often overcome by the use of appropriate adjuvants. Heat-labile enterotoxins (HLT) produced by enterotoxigenic strains of Escherichia coli are potent adjuvants when administered by mucosal or systemic routes. The efficacy of the type II HLT, however, has not been well-defined when administered by the intradermal (ID) route. Using a murine ID immunization model, the adjuvant properties of LT-IIb and LT-IIc, two type II HLTs, were compared with those of LT-I, a prototypical type I HLT. While all three HLT adjuvants enhanced Ag-specific humoral responses to similar levels, LT-IIb and LT-IIc, in contrast to LT-I, induced a more vigorous Ag-specific CD8+ T cell response and proffered faster clearance of Listeria monocytogenes in a challenge model. Additionally, LT-IIb and LT-IIc induced distinct differences in the profiles of the Ag-specific CD8+ T cell responses. While LT-IIc stimulated a robust and rapid primary CD8+ T cell response, LT-IIb exhibited slower CD8+ T cell expansion and contraction kinetics with the formation of higher percentages of effector memory cells. In comparison to LT-I and LT-IIc, LT-IIb evoked better long-term protection after immunization. Furthermore, LT-IIb and LT-IIc enhanced the total number of dendritic cells (DC) in the draining lymph node (DLN) and expression of costimulatory molecules CD80, CD86, and CD40 on DCs. In contrast to LT-I, LT-IIb and LT-IIc induced less edema, cellular infiltrates, and general inflammation at the site of ID injection. Thus, LT-IIb and LT-IIc are attractive comprehensive ID adjuvants with unique characteristic that enhance humoral and cellular immunity to a co-administered protein Ag.


Assuntos
Antígenos de Bactérias/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/farmacologia , Linfócitos T CD8-Positivos/imunologia , Escherichia coli Enterotoxigênica/química , Enterotoxinas/administração & dosagem , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Animais , Antígenos de Bactérias/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Imunização , Memória Imunológica/efeitos dos fármacos , Inflamação/patologia , Injeções Intradérmicas , Cinética , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Ovalbumina/imunologia
15.
Am J Pathol ; 184(1): 55-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24183780

RESUMO

Mucosal vaccines are thought to confer superior protection against mucosal infectious diseases. In addition, mucosal routes of vaccine delivery preferentially induce the generation of T helper 17 (Th17) cells, which produce the cytokine IL-17. Th17 cells are critical in mediating vaccine-induced immunity against several mucosal infectious diseases. However, IL-17 is also a potent proinflammatory cytokine, and we recently showed that IL-17 mediates immunopathology and lung injury after influenza infection in mice. In the present study, we tested the hypothesis that mucosal pre-exposure to Th17-inducing adjuvants can promote disease exacerbation upon subsequent infection with influenza virus. Mice mucosally pre-exposed to Th17-inducing adjuvants, such as type II heat-labile enterotoxin or cholera toxin, resulted in increased morbidity and exacerbated lung inflammation upon subsequent infection with influenza virus. Furthermore, the increased morbidity was accompanied by increased expression of inflammatory chemokines and increased accumulation of neutrophils. Importantly, blockade of the IL-17 pathway in mice pre-exposed to Th17-inducing adjuvants resulted in attenuation of the inflammatory phenotype seen in influenza-infected mice. Our findings indicate that, before mucosal Th17-inducing adjuvants can be used in vaccine strategies, the short- and long-term detrimental effects of such adjuvants on disease exacerbation and lung injury in response to infections, such as influenza, should be carefully studied.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Infecções por Orthomyxoviridae/imunologia , Células Th17/imunologia , Animais , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Hibridização In Situ , Vírus da Influenza A , Vacinas contra Influenza/imunologia , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Infecções por Orthomyxoviridae/patologia , Reação em Cadeia da Polimerase
16.
PLoS One ; 8(8): e69678, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936344

RESUMO

Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.


Assuntos
Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/administração & dosagem , Enterotoxinas/administração & dosagem , Proteínas de Escherichia coli/administração & dosagem , Inflamação/prevenção & controle , Pele/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas Sintéticas/uso terapêutico , Vacinas/administração & dosagem , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos Neutralizantes/uso terapêutico , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Sinergismo Farmacológico , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Feminino , Imunidade nas Mucosas , Imunização , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pele/metabolismo , Vacinas/imunologia , Vacinas/metabolismo
17.
Vet Immunol Immunopathol ; 152(1-2): 68-77, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23137790

RESUMO

The heat-labile enterotoxins (HLTs) of Escherichia coli and Vibrio cholerae are classified into two major types on the basis of genetic, biochemical, and immunological properties. Type I and Type II HLT have been intensively studied for their exceptionally strong adjuvant activities. Despite general structural similarities, these molecules, in intact or derivative (non-toxic) forms, display notable differences in their mode of immunomodulatory action. The molecular basis of these differences has remained largely uncharacterized until recently. This review focuses on the Type II HLTs and their immunomodulatory properties which depend largely on interactions with unique gangliosides and Toll-like receptors that are not utilized by the Type I HLTs.


Assuntos
Enterotoxinas/imunologia , Escherichia coli/imunologia , Fatores Imunológicos/imunologia , Vibrio cholerae/imunologia , Adjuvantes Imunológicos/farmacologia , Enterotoxinas/química , Enterotoxinas/genética , Escherichia coli/química , Gangliosídeos/imunologia , Imunidade nas Mucosas , Fatores Imunológicos/química , Fatores Imunológicos/genética , Receptores Toll-Like/química , Receptores Toll-Like/imunologia
18.
Glycobiology ; 23(1): 23-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22917572

RESUMO

Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galß1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc-host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galß1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions.


Assuntos
Adjuvantes Imunológicos/metabolismo , Toxinas Bacterianas/metabolismo , Ceramidas/metabolismo , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Gangliosídeos/metabolismo , Adjuvantes Imunológicos/química , Animais , Toxinas Bacterianas/química , Sítios de Ligação , Sequência de Carboidratos , Células Cultivadas , Ceramidas/química , Enterotoxinas/química , Proteínas de Escherichia coli/química , Gangliosídeos/química , Macrófagos/metabolismo , Camundongos , Especificidade por Substrato
19.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 12): 1604-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23151625

RESUMO

The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B(5)) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B(5), but not the LT-IIb-B(5) Ser74Asp variant [LT-IIb-B(5)(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B(5)(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B(5) and the LT-IIb-B(5) Thr13Ile [LT-IIb-B(5)(T13I)] and LT-IIb-B(5) Ser74Ala [LT-IIb-B(5)(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B(5) have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B(5)(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B(5)(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B(5)(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B(5)(T13I) variant to GD1a ganglioside.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Enterotoxinas/química , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Escherichia coli/química , Receptor 2 Toll-Like/metabolismo , Toxinas Bacterianas/metabolismo , Cristalização , Cristalografia por Raios X , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Transdução de Sinais , Eletricidade Estática , Relação Estrutura-Atividade
20.
Vet Microbiol ; 159(1-2): 83-9, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22480773

RESUMO

Type II heat-labile enterotoxins (LT-II) have been reported in Escherichia coli isolates from humans, animals, food and water samples. The goal here was to determine the specific roles of the antigenically distinguishable LT-IIa and LT-IIb subtypes in pathogenesis and virulence of enterotoxigenic E. coli (ETEC) which has not been previously reported. The prevalence of genes encoding for LT-II was determined by colony blot hybridization in a collection of 1648 E. coli isolates from calves and pigs with diarrhea or other diseases and from healthy animals. Only five isolates hybridized with the LT-II probe and none of these isolates contained genes for other enterotoxins or adhesins associated with porcine or bovine ETEC. Ligated intestinal loops in calves, pigs, and rabbits were used to determine the potential of purified LT-IIa and LT-IIb to cause intestinal secretion. LT-IIa and LT-IIb caused significant secretion in the intestinal loops in calves but not in the intestinal loops of rabbits or pigs. In contrast, neonatal pigs inoculated with isogenic adherent E. coli containing the cloned genes for LT-I, LT-IIa or LT-IIb developed severe watery diarrhea with weight loss that was significantly greater than pigs inoculated with the adherent, non-toxigenic parental or vector only control strains. The results demonstrate that the incidence of LT-II appeared to be very low in porcine and bovine E. coli. However, a potential role for these enterotoxins in E. coli-mediated diarrhea in animals was confirmed because purified LT-IIa and LT-IIb caused fluid secretion in bovine intestinal loops and adherent isogenic strains containing cloned genes encoding for LT-IIa or LT-IIb caused severe diarrhea in neonatal pigs.


Assuntos
Escherichia coli Enterotoxigênica/patogenicidade , Enterotoxinas/metabolismo , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Animais , Animais Recém-Nascidos , Bovinos , Escherichia coli Enterotoxigênica/genética , Enterotoxinas/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Intestinos/microbiologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...