Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352499

RESUMO

The challenge of systematically modifying and optimizing regulatory elements for precise gene expression control is central to modern genomics and synthetic biology. Advancements in generative AI have paved the way for designing synthetic sequences with the aim of safely and accurately modulating gene expression. We leverage diffusion models to design context-specific DNA regulatory sequences, which hold significant potential toward enabling novel therapeutic applications requiring precise modulation of gene expression. Our framework uses a cell type-specific diffusion model to generate synthetic 200 bp regulatory elements based on chromatin accessibility across different cell types. We evaluate the generated sequences based on key metrics to ensure they retain properties of endogenous sequences: transcription factor binding site composition, potential for cell type-specific chromatin accessibility, and capacity for sequences generated by DNA diffusion to activate gene expression in different cell contexts using state-of-the-art prediction models. Our results demonstrate the ability to robustly generate DNA sequences with cell type-specific regulatory potential. DNA-Diffusion paves the way for revolutionizing a regulatory modulation approach to mammalian synthetic biology and precision gene therapy.

2.
Chembiochem ; 23(16): e202200209, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35599237

RESUMO

To mimic the levels of spatiotemporal control that exist in nature, tools for chemically induced dimerization (CID) are employed to manipulate protein-protein interactions. Although linker composition is known to influence speed and efficiency of heterobifunctional compounds, modeling or in vitro experiments are often insufficient to predict optimal linker structure. This can be attributed to the complexity of ternary complex formation and the overlapping factors that impact the effective concentration of probe within the cell, such as efflux and passive permeability. Herein, we synthesize a library of modular chemical tools with varying linker structures and perform quantitative microscopy in live cells to visualize dimerization in real-time. We use our optimized probe to demonstrate our ability to recruit a protein of interest (POI) to the mitochondria, cell membrane, and nucleus. Finally, we induce and monitor local and global phase separation. We highlight the importance of quantitative approaches to linker optimization for dynamic systems and introduce new, synthetically accessible tools for the rapid control of protein localization.


Assuntos
Transporte Proteico , Membrana Celular , Dimerização
3.
Nat Commun ; 10(1): 1012, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833557

RESUMO

Amphiphilicity in ɑ-helical antimicrobial peptides (AMPs) is recognized as a signature of potential membrane activity. Some AMPs are also strongly immunomodulatory: LL37-DNA complexes potently amplify Toll-like receptor 9 (TLR9) activation in immune cells and exacerbate autoimmune diseases. The rules governing this proinflammatory activity of AMPs are unknown. Here we examine the supramolecular structures formed between DNA and three prototypical AMPs using small angle X-ray scattering and molecular modeling. We correlate these structures to their ability to activate TLR9 and show that a key criterion is the AMP's ability to assemble into superhelical protofibril scaffolds. These structures enforce spatially-periodic DNA organization in nanocrystalline immunocomplexes that trigger strong recognition by TLR9, which is conventionally known to bind single DNA ligands. We demonstrate that we can "knock in" this ability for TLR9 amplification in membrane-active AMP mutants, which suggests the existence of tradeoffs between membrane permeating activity and immunomodulatory activity in AMP sequences.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/imunologia , Peptídeos Catiônicos Antimicrobianos/química , DNA/química , Receptor Toll-Like 9/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Simulação por Computador , DNA/imunologia , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Ligantes , Macrófagos/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica em alfa-Hélice/fisiologia , Espalhamento de Radiação , Receptor Toll-Like 9/imunologia , Difração de Raios X , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...