Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 772946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975380

RESUMO

Post-traumatic stress disorder (PTSD) is initiated by traumatic-stress exposure and manifests into a collection of symptoms including increased anxiety, sleep disturbances, enhanced response to triggers, and increased sympathetic nervous system arousal. PTSD is highly co-occurring with alcohol use disorder. Only some individuals experiencing traumatic stress develop PTSD and a subset of individuals with PTSD develop co-occurring alcohol use disorder. To investigate the basis of these individual responses to traumatic stress, single prolonged stress (SPS) a rodent model of traumatic stress was applied to young adult female rats. Individual responses to SPS were characterized by measuring anxiety-like behaviors with open field and elevated plus maze tests. Rats were then allowed to drink ethanol under an intermittent two bottle choice procedure for 8 weeks, and ethanol consumption was measured. An artificial intelligence algorithm was built to predict resilient and vulnerable individuals based on data from anxiety testing and ethanol consumption. This model was implemented in a second cohort of rats that underwent SPS without ethanol drinking to identify resilient and vulnerable individuals for further study. Analysis of neuropeptide Y (NPY) levels and expression of its receptors Y1R and Y2R mRNA in the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), and bed nucleus stria terminalis (BNST) were performed. Results demonstrate that resilient rats had higher expression of Y2R mRNA in the CeA compared with vulnerable and control rats and had higher levels of NPY protein in the BNST compared to controls. The results of the study show that an artificial intelligence algorithm can identify individual differences in response to traumatic stress which can be used to predict subsequent ethanol drinking, and the NPY pathway is differentially altered following traumatic stress exposure in resilient and vulnerable populations. Understanding neurochemical alterations following traumatic-stress exposure is critical in developing prevention strategies for the vulnerable phenotype and will help further development of novel therapeutic approaches for individuals suffering from PTSD and at risk for alcohol use disorder.

2.
Neurobiol Stress ; 13: 100232, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344688

RESUMO

Cocaine use and withdrawal prompt stress system responses. Stress and the negative affective state produced by cocaine withdrawal are major triggers for relapse. FKBP5 is a co-chaperone of the glucocorticoid receptor and regulates HPA axis negative feedback. The role of FKBP5 in cocaine-related behaviors has not been studied. The FKBP5 inhibitor SAFit2 was used to examine the role of FKBP5 in anxiety-like behavior during early cocaine withdrawal and in stress-induced reinstatement following cocaine self-administration in male and female rats. Withdrawal from cocaine self-administration resulted in heightened anxiety-like behavior in female rats, which was significantly attenuated by SAFit2 administration. SAFit2 pretreatment prior to stress-induced reinstatement to cocaine seeking significantly reduced active lever presses of males. In female rats, SAFit2 administration prevented stress-induced reinstatement for rats in metestrus or diestrus, but not proestrus or estrus phases at the time of reinstatement. These data suggest an important role for FKBP5 in stress-related behaviors following cocaine self-administration, particularly in females.

3.
Int J Neuropsychopharmacol ; 23(2): 117-124, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31867624

RESUMO

BACKGROUND: Cocaine withdrawal activates stress systems. Females are more vulnerable to relapse to cocaine use and more sensitive to withdrawal-induced negative affect. Delta opioid receptors modulate anxiety-like behavior during cocaine withdrawal in rats. This study measured the time course of gene regulation of one of the main stress peptides, corticotropin-releasing factor (CRF), and its type 1 receptor in male and female rats as well as the ability of the delta opioid receptor agonist SNC80 to normalize cocaine withdrawal-induced changes in CRF mRNA. METHODS: Rats were injected with cocaine or saline 3 times daily for 14 days. Brains were collected 30 minutes, 24 hours, 48 hours, 7 days, and 14 days following the last injection. The paraventricular nucleus of the hypothalamus, central amygdala, and bed nucleus of the stria terminalis were processed for quantitative reverse transcriptase PCR measurement of CRF and CRFR1 mRNA. Additional rats received SNC80 during early cocaine withdrawal, and CRF mRNA was measured in the central amygdala. RESULTS: CRF mRNA was elevated in the central amygdala at 24 hours and the paraventricular nucleus at 48 hours of cocaine withdrawal in males and females. Significant sex differences in cocaine-induced CRF upregulation were found in the bed nucleus of the stria terminalis at 30 minutes and 24 hours. SNC80 administration attenuated the increase in CRF mRNA in the central amygdala of female rats only. CONCLUSIONS: CRF mRNA regulation during cocaine withdrawal is sex, time, and brain region dependent. Administration of a delta opioid receptor agonist during early withdrawal may ameliorate stress-related negative affect in females by abrogating the induction of CRF mRNA.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Núcleos Septais/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Benzamidas/farmacologia , Modelos Animais de Doenças , Feminino , Masculino , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Regulação para Cima
4.
Drug Alcohol Depend ; 199: 101-105, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029877

RESUMO

BACKGROUND: Dysregulation of glucocorticoid receptors has been implicated in addiction and stress-related disorders. FKBP5 is a co-chaperone of the glucocorticoid receptor and regulates receptor sensitivity. While FKBP5 is known to be involved in mood- and stress-related disorders, less is known regarding FKBP5 and cocaine abuse. This study investigated the regulation of FKBP5 expression in the extended amygdala and paraventricular nucleus of the hypothalamus, regions important in the control of stress-responses and HPA axis function, following chronic and acute cocaine administration. METHODS: Adult male and female rats received saline or cocaine three times per day for 1 or 14 days. Brain tissue was collected 30 min, 24 h, 48 h, 7 days or 14 days following the final injection. FKBP5 mRNA was measured by qRT-PCR in the central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST) and paraventricular nucleus (PVN). RESULTS: FKBP5 mRNA levels were significantly elevated as a result of chronic cocaine administration in both males and females in the PVN and BNST 30 min and 24 h after the final injection. In females, FKBP5 was also elevated in the CeA. Following acute cocaine, FKBP5 gene expression was unaltered except for elevated levels in the BNST of females 24 h later. CONCLUSIONS: These results demonstrate that FKBP5 mRNA is regulated by cocaine administration. Increased FKBP5 expression may play a role in the dysregulation of the stress axis following chronic cocaine exposure, contributing to the negative affective symptoms of cocaine withdrawal.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Cocaína/administração & dosagem , Proteínas de Ligação a Tacrolimo/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Regulação para Cima/fisiologia
5.
Neuropsychopharmacology ; 43(5): 1001-1009, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28741623

RESUMO

Hypothalamic hypocretin (orexin) peptides mediate arousal, attention, and reward processing. Fibers containing orexins project to brain structures that govern motivated behavior, including the ventral tegmental area (VTA). A number of psychiatric conditions, including attention deficit hyperactivity disorder (ADHD) and substance use disorders, are characterized by deficits in impulse control, however the relationship between orexin and impulsive behavior is incompletely characterized. The effects of systemic or centrally administered orexin receptor (OXR) antagonists on measures of impulsive-like behavior in rats were evaluated using the five-choice serial reaction time task (5-CSRTT) and delay discounting procedures. These paradigms were also used to test the capacity of OXR antagonists to attenuate acute cocaine-evoked impulsivity. Finally, immunohistochemistry and calcium imaging were used to assess potential cellular mechanisms by which OXR blockade may influence motor impulsivity. Suvorexant, a dual (OX1/2R) orexin receptor antagonist, reduced cocaine-evoked premature responses in 5-CSRTT when administered systemically or directly into VTA. Neither suvorexant nor OX1R- or OX2R-selective compounds (SB334867 or TCS-OX2-29, respectively) altered delay discounting. Finally, suvorexant did not alter Fos-immunoreactivity within tyrosine hydroxylase-immunolabeled neurons of VTA, but did attenuate cocaine- and orexin-induced increases in calcium transient amplitude within neurons of VTA. Results from the present studies suggest potential therapeutic utility of OXR antagonists in reducing psychostimulant-induced motor impulsivity. These findings also support the view that orexin transmission is closely involved in executive function in normal and pathological conditions.


Assuntos
Azepinas/farmacologia , Cocaína/antagonistas & inibidores , Cocaína/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Antagonistas dos Receptores de Orexina/farmacologia , Triazóis/farmacologia , Animais , Benzoxazóis/farmacologia , Comportamento de Escolha , Desvalorização pelo Atraso/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Microinjeções , Naftiridinas , Orexinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Piridinas/farmacologia , Ratos , Ureia/análogos & derivados , Ureia/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
6.
Brain Behav Immun ; 62: 30-34, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27575003

RESUMO

Plasma levels of the chemokine CXCL12 are elevated in mice following acute cocaine exposure and decreased in human cocaine abusers during withdrawal. CXCL12 is also one of the few chemokines located in the brain and can modulate dopamine transmission through activation of its receptor CXCR4. To assess a role for the CXCL12/CXCR4 system in behavioral effects of cocaine, we tested the hypothesis that AMD 3100 (Plerixafor), a CXCR4 antagonist, would inhibit conditioned place preference (CPP) and locomotor activation produced by cocaine. Rats injected with cocaine (10mg/kg) displayed CPP relative to saline-injected controls following 4 conditioning sessions. AMD 3100 (1, 2.5, 5mg/kg) administered prior to cocaine conditioning reduced development of cocaine CPP. AMD 3100 (5mg/kg) also inhibited expression of cocaine-induced CPP in a paradigm in which it was injected once (following cocaine conditioning and just prior to CPP testing). In addition, AMD 3100 (5, 10mg/kg) pretreatment reduced locomotor activation produced by an acute cocaine injection (15mg/kg) but did not affect basal locomotor activity relative to saline-injected controls. Repeated cocaine exposure produced a significant increase (1.49-fold) in CXCL12 mRNA expression in the ventral tegmental area (VTA). Our results suggest that the CXCL12/CXCR4 system in the brain reward circuit is impacted by cocaine exposure and influences behavioral effects related to the abuse liability of cocaine.


Assuntos
Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Compostos Heterocíclicos/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Animais , Aprendizagem por Associação/efeitos dos fármacos , Benzilaminas , Ciclamos , Masculino , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
7.
Eur J Neurosci ; 44(10): 2818-2828, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27623427

RESUMO

Nicotine dependence is associated with increased risk for emotional, cognitive and neurological impairments later in life. This study investigated the long-term effects of nicotine exposure during adolescence and adulthood on measures of depression, anxiety, learning and hippocampal pyramidal cell morphology. Mice (C57BL/6J) received saline or nicotine for 12 days via pumps implanted on postnatal day 32 (adolescent) or 54 (adults). Thirty days after cessation of nicotine/saline, mice were tested for learning using contextual fear conditioning, depression-like behaviors using the forced swim test or anxiety-like behaviors with the elevated plus maze. Brains from nicotine- or saline-exposed mice were processed with Golgi stain for whole neuron reconstruction in the CA1 and CA3 regions of the hippocampus. Results demonstrate higher depression-like responses in both adolescent and adult mice when tested during acute nicotine withdrawal. Heightened depression-like behaviors persisted when tested after 30 days of nicotine abstinence in mice exposed as adolescents, but not adults. Adult, but not adolescent, exposure to nicotine resulted in increased open-arm time when tested after 30 days of abstinence. Nicotine exposure during adolescence caused deficits in contextual fear learning indicated by lower levels of freezing to the context as compared with controls when tested 30 days later. In addition, reduced dendritic length and complexity in the apical CA1 branches in adult mice exposed to nicotine during adolescence were found. These results demonstrate that nicotine exposure and withdrawal can have long-term effects on emotional and cognitive functioning, particularly when nicotine exposure occurs during the critical period of adolescence.


Assuntos
Cognição/efeitos dos fármacos , Depressão/etiologia , Emoções/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Animais , Condicionamento Clássico , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...