Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(19): 167770, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907571

RESUMO

The segregation of prokaryotic plasmids typically requires a centromere-like site and two proteins, a centromere-binding protein (CBP) and an NTPase. By contrast, a single 245 residue Par protein mediates partition of the prototypical staphylococcal multiresistance plasmid pSK1 in the absence of an identifiable NTPase component. To gain insight into centromere binding by pSK1 Par and its segregation function we performed structural, biochemical and in vivo studies. Here we show that pSK1 Par binds a centromere consisting of seven repeat elements. We demonstrate this Par-centromere interaction also mediates Par autoregulation. To elucidate the Par centromere binding mechanism, we obtained a structure of the Par N-terminal DNA-binding domain bound to centromere DNA to 2.25 Å. The pSK1 Par structure, which harbors a winged-helix-turn-helix (wHTH), is distinct from other plasmid CBP structures but shows homology to the B. subtilis chromosome segregation protein, RacA. Biochemical studies suggest the region C-terminal to the Par wHTH forms coiled coils and mediates oligomerization. Fluorescence microscopy analyses show that pSK1 Par enhances the separation of plasmids from clusters, driving effective segregation upon cell division. Combined the data provide insight into the molecular properties of a single protein partition system.


Assuntos
Proteínas de Bactérias , Centrômero , Segregação de Cromossomos , Nucleosídeo-Trifosfatase , Plasmídeos , Staphylococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Centrômero/genética , Centrômero/metabolismo , DNA/química , Nucleosídeo-Trifosfatase/metabolismo , Plasmídeos/genética , Staphylococcus/genética
2.
J Anal Psychol ; 58(1): 4-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23350996

RESUMO

Jung's contribution to the understanding of the relevance of psychology to alchemy has become increasingly invalidated by the ahistorical nature of his approach, just as his tendency to ignore the importance of cognitive aesthetics for an improved comprehension of the functions of alchemical images has prevented Jungians from further extending Jung's insight of the importance of alchemy for psychology. This paper explores the history of the development of alchemical illustrations in Western Europe from the 14(th) to the 16(th) century, tracing the emergent processes over time. It is only when we take into consideration the historical dimension and the aesthetics of alchemical imagery that it becomes possible to demonstrate how the increasing use of certain aesthetic techniques such as the disjunction and recombination of separate metaphorical elements of previous illustrations, the use of compressive combinations and the use of framing devices worked to gradually increase the cognitive function and the symbolical power of the images. If alchemy is still relevant to psychotherapy it is exactly because it helps us to understand the importance of cognitive aesthetics in our approach to the images, metaphors and narratives of our patients.


Assuntos
Alquimia , Livros Ilustrados , Cognição , Estética , Humanos , Teoria Junguiana
3.
Proteomics ; 11(15): 3056-69, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21674802

RESUMO

Pseudomonas aeruginosa is a ubiquitous pathogen most typically associated with wound infections, but also the main cause of mortality in patients suffering from cystic fibrosis (CF). The ability to adapt to oxidative stress associated with host immune defense may be one mechanism by which P. aeruginosa establishes infection in the cystic fibrosis lung and eventually out-competes other pathogenic bacteria to persist into chronic infection. We utilized a proteomics approach to identify the proteins associated with the oxidative stress response of P. aeruginosa PAO1 to hydrogen peroxide and superoxide-inducing paraquat. 2-DE and MS allowed for the identification of 59 and 58 protein spots that were statistically significantly altered following H(2) O(2) and paraquat treatment, respectively. We observed a unique mass and pI pattern for alkylhydroperoxide reductase C (AhpC) that was replicated by hypothetical protein PA3529 following treatment with 10 mM H(2) O(2) . AhpC belongs to the 2-Cys peroxiredoxin family and is a redox enzyme responsible for removing peroxides in bacterial cells. MS analysis showed that PA3529 was altered by the formation of a dimer via a disulfide bond in a manner analogous to that known for AhpC, and by cysteine overoxidation to Cys-sulfonic acid (SO(3) H) postoxidative stress. PA3529 is therefore a functional AhpC paralog expressed under H(2) O(2) stress. Following paraquat-induced oxidative stress, we also observed the overabundance and likely oxidative modification of a second hypothetical antioxidant protein (PA3450) that shares sequence similarity with 1-Cys peroxiredoxins. Other induced proteins included known oxidative stress proteins (superoxide dismutase and catalase), as well as those involved in iron acquisition (siderophore biosynthesis and receptor proteins FpvA and FptA) and hypothetical proteins, including others predicted to be antioxidants (PA0848). These data suggest that P. aeruginosa contains a plethora of novel antioxidant proteins that contribute to its increased resistance against oxidative stress.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/fisiologia , Paraquat/farmacologia , Peroxirredoxinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/análise , Peroxirredoxinas/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Mol Cell Proteomics ; 10(2): M000031-MCP201, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20360033

RESUMO

Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or ß-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence.


Assuntos
Cromatografia/métodos , Peptídeos/química , Polissacarídeos/química , Campylobacter jejuni/metabolismo , Membrana Celular/metabolismo , Transporte de Elétrons , Elétrons , Eletroforese em Gel Bidimensional/métodos , Genoma , Glicopeptídeos/química , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas/métodos , Estrutura Terciária de Proteína , Glycine max/metabolismo
5.
J Proteome Res ; 8(10): 4654-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19689120

RESUMO

Campylobacter jejuni is the most common cause of bacterial gastroenteritis in the developed world. Immunoproteomics highlighted a 42-45 kDa antigen that comigrated on two-dimensional (2-DE) gels with the C. jejuni major outer membrane protein (MOMP). Predictive analysis revealed two candidates for the identity of the antigen, the most likely of which was the surface-associated lipoprotein, JlpA. Recombinant JlpA (rJlpA) reacted with patient sera, confirming that JlpA is antigenic. Polyclonal antibodies raised against rJlpA reacted against 3 JlpA mass variants from multiple C. jejuni. These variants differed by approximately 1.5 kDa, suggesting the presence of the N-linked C. jejuni glycan on two sites. Soybean agglutinin affinity and 2-DE purified 2 JlpA glycoforms (43.5 and 45 kDa). Their identities were confirmed using mass spectrometry following trypsin digest. Glycopeptides within JlpA variants were identified by proteinase-K digestion, graphite micropurification and MS-MS. Sites of glycosylation were confirmed as asparagines 107 and 146, both of which are flanked by the N-linked sequon. Sequence analysis confirmed that the N146 sequon is conserved in all C. jejuni genomes examined to date, while the N107 sequon is absent in the reference strain NCTC 11168. Western blotting confirmed the presence of only a single JlpA glycoform in both virulent (O) and avirulent (GS) isolates of NCTC 11168. MS analysis showed that JlpA exists as 3 discrete forms, unmodified, glycosylated at N146, and glycosylated at both N(146/107), suggesting glycan addition at N146 is necessary for N107 glycosylation. Glycine extracts and Western blotting revealed that doubly glycosylated JlpA was the predominant form on the C. jejuni JHH1 surface; however, glycosylation is not required for antigenicity. This is the first study to identify N-linked glycosylation of a surface-exposed C. jejuni virulence factor and to show strain variation in glycosylation sites.


Assuntos
Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Campylobacter jejuni/genética , Lipoproteínas/química , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Campylobacter/imunologia , Sequência Consenso , Glicosilação , Humanos , Lipoproteínas/genética , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Lectinas de Plantas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas de Soja
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...