Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 61: 124-133, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760619

RESUMO

The gold standard substrate for the ex vivo expansion of human limbal stem cells (LSCs) remains the human amniotic membrane (HAM) but this is not a defined substrate and is subject to biological variability and the potential to transmit disease. To better define HAM and mitigate the risk of disease transmission, we sought to determine if decellularisation and/or γ-irradiation have an adverse effect on culture growth and LSC phenotype. Ex vivo limbal explant cultures were set up on fresh HAM, HAM decellularised with 0.5M NaOH, and 0.5% (w/v) sodium dodecyl sulfate (SDS) with or without γ-irradiation. Explant growth rate was measured and LSC phenotype was characterised by histology, immunostaining and qRT-PCR (ABCG2, ΔNp63, Ki67, CK12, and CK13). Ƴ-irradiation marginally stiffened HAM, as measured by Brillouin spectromicroscopy. HAM stiffness and γ-irradiation did not significantly affect the LSC phenotype, however LSCs expanded significantly faster on Ƴ-irradiated SDS decellularised HAM (p<0.05) which was also corroborated by the highest expression of Ki67 and putative LSC marker, ABCG2. Colony forming efficiency assays showed a greater yield and proportion of holoclones in cells cultured on Ƴ-irradiated SDS decellularised HAM. Together our data indicate that SDS decellularised HAM may be a more efficacious substrate for the expansion of LSCs and the use of a γ-irradiated HAM allows the user to start the manufacturing process with a sterile substrate, potentially making it safer. STATEMENT OF SIGNIFICANCE: Despite its disadvantages, including its biological variability and its ability to transfer disease, human amniotic membrane (HAM) remains the gold standard substrate for limbal stem cell (LSC) culture. To address these disadvantages, we used a decellularised HAM sterilised by gamma-irradiation for LSC culture. We cultured LSCs on fresh HAM, HAM decellularised with NaOH, HAM decellularised with sodium dodecyl sulfate (SDS) and HAM decellularised with SDS and sterilised with gamma-irradiation. We demonstrated that although HAM decellularised with SDS and sterilised with gamma-irradiation is significantly stiffer this does not affect LSC culture growth rate or the phenotype of cultured LSCs. We therefore recommend the use of SDS decellularised gamma-irradiated HAM in future LSC clinical trials.


Assuntos
Âmnio/citologia , Âmnio/efeitos da radiação , Raios gama , Limbo da Córnea/citologia , Dodecilsulfato de Sódio/farmacologia , Células-Tronco/citologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Humanos , Fenótipo
2.
Biomater Sci ; 2(6): 867-874, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32481819

RESUMO

The self-assembly of the alanine-rich amphiphilic peptides Lys(Ala)6Lys (KA6K) and Lys(Ala)6Glu (KA6E) with homotelechelic or heterotelechelic charged termini respectively has been investigated in aqueous solution. These peptides contain hexa-alanine sequences designed to serve as substrates for the enzyme elastase. Electrostatic repulsion of the lysine termini in KA6K prevents self-assembly, whereas in contrast KA6E is observed, through electron microscopy, to form tape-like fibrils, which based on X-ray scattering contain layers of thickness equal to the molecular length. The alanine residues enable efficient packing of the side-chains in a beta-sheet structure, as revealed by circular dichroism, FTIR and X-ray diffraction experiments. In buffer, KA6E is able to form hydrogels at sufficiently high concentration. These were used as substrates for elastase, and enzyme-induced de-gelation was observed due to the disruption of the beta-sheet fibrillar network. We propose that hydrogels of the simple designed amphiphilic peptide KA6E may serve as model substrates for elastase and this could ultimately lead to applications in biomedicine and regenerative medicine.

3.
Biomater Sci ; 2(3): 362-369, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32481862

RESUMO

We studied the self-assembly of peptide A6RGD (A: alanine, R: arginine, G: glycine, D: aspartic acid) in water, and the use of A6RGD substrates as coatings to promote the attachment of human cornea stromal fibroblasts (hCSFs). The self-assembled motif of A6RGD was shown to depend on the peptide concentration in water, where both vesicle and fibril formation were observed. Oligomers were detected for 0.7 wt% A6RGD, which evolved into short peptide fibres at 1.0 wt% A6RGD, while a co-existence of vesicles and long peptide fibres was revealed for 2-15 wt% A6RGD. A6RGD vesicle walls were shown to have a multilayer structure built out of highly interdigitated A6 units, while A6RGD fibres were based on ß-sheet assemblies. Changes in the self-assembly motif with concentration were reflected in the cell culture assay results. Films dried from 0.1-1.0 wt% A6RGD solutions allowed hCSFs to attach and significantly enhanced cell proliferation relative to the control. In contrast, films dried from 2.5 wt% A6RGD solutions were toxic to hCSFs.

4.
Langmuir ; 28(31): 11599-608, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22788380

RESUMO

The self-assembly of the peptide amphiphile (PA) hexadecyl-(ß-alanine-histidine) is examined in aqueous solution, along with its mixtures with multilamellar vesicles formed by DPPC (dipalmitoyl phosphatidylcholine). This PA, denoted C(16)-ßAH, contains a dipeptide headgroup corresponding to the bioactive molecule L-carnosine. It is found to self-assemble into nanotapes based on stacked layers of molecules. Bilayers are found to coexist with monolayers in which the PA molecules pack with alternating up-down arrangement so that the headgroups decorate both surfaces. The bilayers become dehydrated as PA concentration increases and the number of layers in the stack decreases to produce ultrathin nanotapes comprised of 2-3 bilayers. Addition of the PA to DPPC multilamellar vesicles leads to a transition to well-defined unilamellar vesicles. The unique ability to modulate the stacking of this PA as a function of concentration, combined with its ability to induce a multilamellar to unilamellar thinning of DPPC vesicles, may be useful in biomaterials applications where the presentation of the peptide function at the surface of self-assembled nanostructures is crucial.


Assuntos
Materiais Biocompatíveis/química , Carnosina/química , Dipeptídeos/química , Bicamadas Lipídicas/química , Tensoativos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Cinética , Microscopia Eletrônica de Transmissão , Conformação Proteica , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Lipossomas Unilamelares/química , Água , Difração de Raios X
5.
Br J Ophthalmol ; 94(8): 1057-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19304581

RESUMO

BACKGROUND/AIMS: Scant consideration has been given to the variation in structure of the human amniotic membrane (AM) at source or to the significance such differences might have on its clinical transparency. Therefore, we applied our experience of quantifying corneal transparency to AM. METHODS: Following elective caesarean, AM from areas of the fetal sac distal and proximal (ie, adjacent) to the placenta was compared with freeze-dried AM. The transmission of light through the AM samples was quantified spectrophotometrically; also, tissue thickness was measured by light microscopy and refractive index by refractometry. RESULTS: Freeze-dried and freeze-thawed AM samples distal and proximal to the placenta differed significantly in thickness, percentage transmission of visible light and refractive index. The thinnest tissue (freeze-dried AM) had the highest transmission spectra. The thickest tissue (freeze-thawed AM proximal to the placenta) had the highest refractive index. Using the direct summation of fields method to predict transparency from an equivalent thickness of corneal tissue, AM was found to be up to 85% as transparent as human cornea. CONCLUSION: When preparing AM for ocular surface reconstruction within the visual field, consideration should be given to its original location from within the fetal sac and its method of preservation, as either can influence corneal transparency.


Assuntos
Âmnio/anatomia & histologia , Curativos Biológicos , Córnea/fisiologia , Âmnio/fisiologia , Liofilização , Humanos , Refratometria , Espalhamento de Radiação , Preservação de Tecido/métodos
6.
Eye (Lond) ; 17(8): 927-36, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14631399

RESUMO

PURPOSE: This paper briefly reviews current explanations for corneal transparency and uses a well-developed model to try to explain the increased light scattering either accompanying corneal swelling or following phototherapeutic keratectomy (PTK). METHODS: The direct summation of fields (DSF) method was used to compute light transmission as a function of wavelength. The method requires input of a number of structural parameters. Some of these were obtained from electron micrographs and others were calculated from X-ray diffraction data. RESULTS: By swelling sections of stroma cut from different depths in the tissue, we have shown that fluid entering the cornea causes more swelling in the posterior lamellae than in the anterior lamellae. Furthermore, posterior lamellae can reach a higher final hydration than anterior lamellae. Collagen-free regions ('lakes') exist in corneas swollen in vitro and in Fuch's dystrophy corneas, many of which may be caused by the death of cells. The DSF method shows that local fibril disordering, increased refractive index mismatch, and increased corneal thickness together can account for a 20% increase in light scattering in a Fuch's dystrophy cornea at H=5.8 compared to the normal cornea. Additional scattering is probably caused by 'lakes'. The DSF method applied to PTK rabbit stroma with high levels of haze suggests that the newly deposited collagen is not the cause of the increased light scattering. CONCLUSIONS: Fluid is not uniformly distributed within the corneal stroma when the cornea swells. Increased hydration of posterior lamellae may be because of known differences in the glycosaminoglycans between the anterior and posterior stroma. Lamellar interweave in the anterior stroma probably limits the extent to which the constituent lamellae can swell. The DSF method can be used to account for increased light scattering in oedematous corneas but cannot account for haze following PTK.


Assuntos
Edema da Córnea/fisiopatologia , Opacidade da Córnea/fisiopatologia , Substância Própria/fisiologia , Opacidade da Córnea/etiologia , Substância Própria/fisiopatologia , Humanos , Lasers de Excimer , Modelos Biológicos , Ceratectomia Fotorrefrativa/efeitos adversos , Espalhamento de Radiação
7.
J Refract Surg ; 16(4): 448-55, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10939725

RESUMO

PURPOSE: Hyaluronidase treatment is the initial step of corneaplasty, a treatment under development that induces stromal softening and involves the application of a custom designed forming lens to achieve modification of refractive error. The purpose of this investigation was to examine changes in the arrangement of stromal collagen fibrils after hyaluronidase treatment. METHODS: Rabbit corneas were evaluated by slit-lamp microscopy at 0, 2 and 7 days after treatment and haze was assessed by subjective observation. Molecular and interfibrillar Bragg spacing of corneal collagen were measured from synchrotron x-ray scattering patterns. Transmission electron microscopy and digital image analysis were used to calculate radial distribution functions from the positions of collagen fibrils. The calculated fibril sizes and positions were also used to predict the transmission of visible light through these corneas. RESULTS: Hyaluronidase-treated corneas were shown to have a decreased interfibrillar Bragg spacing of 15% to 21%. Fibril hydration did not change. Transparency of these corneas remained unaltered. CONCLUSIONS: Hyaluronidase reduced the hydration of the corneal stroma, which led to a more compacted collagen fibril arrangement. This compression was predicted to cause a small reduction in the transmission of visible light through the cornea but not to a point likely to cause visual impairment.


Assuntos
Colágeno/ultraestrutura , Substância Própria/ultraestrutura , Hialuronoglucosaminidase/administração & dosagem , Erros de Refração/tratamento farmacológico , Animais , Colágeno/química , Colágeno/efeitos dos fármacos , Substância Própria/química , Substância Própria/efeitos dos fármacos , Masculino , Soluções Oftálmicas , Coelhos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...