Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(6): e2006806, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181076

RESUMO

Aquatic ecosystems worldwide continue to experience unprecedented warming and ecological change. Warming increases metabolic rates of animals, plants, and microbes, accelerating their use of energy and materials, their population growth, and interaction rates. At a much larger biological scale, warming accelerates ecosystem-level processes, elevating fluxes of carbon and oxygen between biota and the atmosphere. Although these general effects of temperature at finer and broader biological scales are widely observed, they can lead to contradictory predictions for how warming affects the structure and function of ecological communities at the intermediate scale of biological organization. We experimentally tested the hypothesis that the presence of predators and their associated species interactions modify the temperature dependence of net ecosystem oxygen production and respiration. We tracked a series of independent freshwater ecosystems (370 L) over 9 weeks, and we found that at higher temperatures, cascading effects of predators on zooplankton prey and algae were stronger than at lower temperatures. When grazing was weak or absent, standing phytoplankton biomass declined by 85%-95% (<1-fold) over the temperature gradient (19-30 °C), and by 3-fold when grazers were present and lacked predators. These temperature-dependent species interactions and consequent community biomass shifts occurred without signs of species loss or community collapse, and only modestly affected the temperature dependence of net ecosystem oxygen fluxes. The exponential increases in net ecosystem oxygen production and consumption were relatively insensitive to differences in trophic interactions among ecosystems. Furthermore, monotonic declines in phytoplankton standing stock suggested no threshold effects of warming across systems. We conclude that local changes in community structure, including temperature-dependent trophic cascades, may be compatible with prevailing and predictable effects of temperature on ecosystem functions related to fundamental effects of temperature on metabolism.


Assuntos
Organismos Aquáticos/metabolismo , Ecossistema , Temperatura , Animais , Biomassa , Carbono/metabolismo , Cadeia Alimentar , Aquecimento Global , Hidrobiologia/métodos , Fitoplâncton/crescimento & desenvolvimento , Zooplâncton/crescimento & desenvolvimento
2.
PeerJ ; 6: e5447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123721

RESUMO

Habitat degradation associated with resource development is a major ecological concern, particularly in Canada's boreal zone where limited information on biodiversity is available. Habitat degradation can lead to reductions in biodiversity and ecosystem function, especially when drivers of variability and diversity patterns have not been identified for a region of interest. In this study, the distribution of diatom genera in the Peace-Athabasca Delta in northeastern Alberta was examined in relation to seasonal, geographic, and alkalinity gradients. Grab samples of six abiotic variables (total dissolved nitrogen, total dissolved phosphorus, dissolved iron, turbidity, pH, and specific conductance (SPC)) were taken from 12 remote wetlands over three sampling periods, and regressed against an ordination of diatom community composition to identify key environmental drivers of diatom community variation. Indirect gradient analysis identified two major gradients among sites. First, separation of sites among sampling periods showed successional seasonal changes in diatom community composition. Second, separation of sites from the Peace sub-delta and Birch sub-delta showed a gradient of geographic separation. Direct gradient analysis failed to explain the underlying drivers of these two gradients, but did show that alkalinity is a key driver of diatom community composition in the Embarras sub-delta, and that these sites could be particularly vulnerable to community changes associated with acidification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...