Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 40(7): 887-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321347

RESUMO

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.


Assuntos
Região CA1 Hipocampal , Plasticidade Neuronal , Células Piramidais , Comportamento Social , Sinapses , Animais , Masculino , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
2.
Trends Neurosci ; 46(11): 971-985, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652840

RESUMO

Synapse organizing proteins are multifaceted molecules that coordinate the complex processes of brain development and plasticity at the level of individual synapses. Their importance is demonstrated by the major brain disorders that emerge when their function is compromised. The mechanisms whereby the various families of organizers govern synapses are diverse, but converge on the structure, function, and plasticity of synapses. Therefore, synapse organizers regulate how synapses adapt to ongoing activity, a process central for determining the developmental trajectory of the brain and critical to all forms of cognition. Here, we explore how synapse organizers set the conditions for synaptic plasticity and the associated molecular events, which eventually link to behavioral features of neurodevelopmental and neuropsychiatric disorders. We also propose central questions on how synapse organizers influence network function through integrating nanoscale and circuit-level organization of the brain.


Assuntos
Plasticidade Neuronal , Sinapses , Humanos , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Encéfalo , Cognição
3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077313

RESUMO

The noradrenergic system is implicated in neuropathologies contributing to major disorders of the memory, including post-traumatic stress disorder and Alzheimer's disease. Determining the impact of norepinephrine on cellular function and plasticity is thus essential for making inroads into our understanding of these brain conditions, while expanding our capacity for treating them. Norepinephrine is a neuromodulator within the mammalian central nervous system which plays important roles in cognition and associated synaptic plasticity. Specifically, norepinephrine regulates the formation of memory through the stimulation of ß-ARs, increasing the dynamic range of synaptic modifiability. The mechanisms through which NE influences neural circuit function have been extended to the level of the epigenome. This review focuses on recent insights into how the noradrenergic recruitment of epigenetic modifications, including DNA methylation and post-translational modification of histones, contribute to homo- and heterosynaptic plasticity. These advances will be placed in the context of synaptic changes associated with memory formation and linked to brain disorders and neurotherapeutic applications.


Assuntos
Potenciação de Longa Duração , Norepinefrina , Animais , Epigênese Genética , Potenciação de Longa Duração/fisiologia , Mamíferos/metabolismo , Plasticidade Neuronal/genética , Norepinefrina/fisiologia , Receptores Adrenérgicos beta/metabolismo , Sinapses/metabolismo
4.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662394

RESUMO

LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa , Animais , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/fisiologia
5.
Elife ; 92020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915137

RESUMO

Post-transcriptional mechanisms regulating cell surface synaptic organizing complexes that control the properties of connections in brain circuits are poorly understood. Alternative splicing regulates the prototypical synaptic organizing complex, neuroligin-neurexin. In contrast to the well-studied neuroligin splice site B, little is known about splice site A. We discovered that inclusion of the positively charged A1 insert in mouse neuroligin-1 increases its binding to heparan sulphate, a modification on neurexin. The A1 insert increases neurexin recruitment, presynaptic differentiation, and synaptic transmission mediated by neuroligin-1. We propose that the A1 insert could be a target for alleviating the consequences of deleterious NLGN1/3 mutations, supported by assays with the autism-linked neuroligin-1-P89L mutant. An enrichment of neuroligin-1 A1 in GABAergic neuron types suggests a role in synchrony of cortical circuits. Altogether, these data reveal an unusual mode by which neuroligin splicing controls synapse development through protein-glycan interaction and identify it as a potential therapeutic target.


Assuntos
Processamento Alternativo , Moléculas de Adesão Celular Neuronais/metabolismo , Polissacarídeos/metabolismo , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Ratos
6.
Eur J Neurosci ; 52(7): 3679-3688, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32275785

RESUMO

Neuromodulators regulate higher-order cognitive processes including learning and memory through modulation of synaptic transmission and plasticity. Norepinephrine is a neuromodulator that is secreted throughout the brain in response to novelty or increased arousal, which alters neural circuits by increasing the modifiability of CNS synapses. Norepinephrine activates metabotropic receptors, initiating complex intracellular signalling cascades that can promote enduring changes in synaptic strength including long-term potentiation (LTP). In particular, activation of beta-adrenergic receptors (ß-ARs) by norepinephrine enhances LTP through downstream engagement of signalling cascades which upregulate protein synthesis at synapses. Here, we sought to determine the select signalling pathways recruited by norepinephrine to promote homosynaptic LTP at hippocampal synapses in mice. Application of norepinephrine initiated a long-lasting form of homosynaptic LTP that requires protein synthesis. Norepinephrine-mediated enhancement of LTP was reduced by inhibition of mammalian target of rapamycin and exchange protein directly activated by cAMP (Epac) but not cAMP-dependent protein kinase A, suggesting that the endogenous ß-AR ligand norepinephrine may preferentially recruit Epac signalling to promote enduring changes in synaptic strength. These findings advance our understanding of the mechanisms through which norepinephrine regulates synaptic plasticity associated with formation of new memories.


Assuntos
Potenciação de Longa Duração , Norepinefrina , Animais , Fatores de Troca do Nucleotídeo Guanina , Hipocampo/metabolismo , Camundongos , Receptores Adrenérgicos beta/metabolismo , Sinapses/metabolismo , Serina-Treonina Quinases TOR
7.
Pract Neurol ; 20(1): 39-49, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31649103

RESUMO

The skull base is the major bony and soft tissue interface for the intracranial and extracranial compartments. Its anatomy is complex, containing multiple traversing foramina that act as conduits for various neurovascular structures. The optimum imaging modality depends on the specific diagnostic question and area of interest; both CT and MR have complementary roles. This article focuses on the applied compartmental anatomy of the skull base and specific imaging protocols, and discusses the range of pathologies that neurologists will encounter.


Assuntos
Imageamento por Ressonância Magnética/métodos , Base do Crânio/anatomia & histologia , Base do Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Hipertensão Intracraniana/diagnóstico por imagem , Hipertensão Intracraniana/patologia , Base do Crânio/patologia , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/patologia , Zumbido/diagnóstico por imagem , Zumbido/patologia
8.
Cent Nerv Syst Agents Med Chem ; 19(3): 187-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749419

RESUMO

Neuromodulation regulates critical functions of CNS synapses, ranging from neural circuit development to high-order cognitive processes, including learning and memory. This broad scope of action is generally mediated through alterations of the strength of synaptic transmission (i.e. synaptic plasticity). Changes in synaptic strength are widely considered to be a cellular representation of learned information. Noradrenaline is a neuromodulator that is secreted throughout the brain in response to novelty or increased arousal. Once released, noradrenaline activates metabotropic receptors, initiating intracellular signaling cascades that promote enduring changes in synaptic strength and facilitate memory storage. Here, we provide an overview of noradrenergic modulation of synaptic plasticity and memory formation within mammalian neural circuits, which has broad applicability within the neurotherapeutics community. Advances in our understanding of noradrenaline in the context of these processes may provide a foundation for refining treatment strategies for multiple brain diseases, ranging from post-traumatic stress disorder to Alzheimer's Disease.


Assuntos
Neurônios Adrenérgicos/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Norepinefrina/metabolismo , Neurônios Adrenérgicos/patologia , Animais , Hipocampo/patologia , Humanos
9.
Curr Opin Neurobiol ; 57: 71-80, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30771697

RESUMO

Synapse development depends on a dynamic balance between synapse promoters and suppressors. MDGAs, immunoglobulin superfamily proteins, negatively regulate synapse development through blocking neuroligin-neurexin interactions. Recent analyses of MDGA-neuroligin complexes revealed the structural basis of this activity and indicate that MDGAs interact with all neuroligins with differential affinities. Surprisingly, analyses of mouse mutants revealed a functional divergence, with targeted mutation of Mdga1 and Mdga2 elevating inhibitory and excitatory synapses, respectively, on hippocampal pyramidal neurons. Further research is needed to determine the synapse-specific organizing properties of MDGAs in neural circuits, which may depend on relative levels and subcellular distributions of each MDGA, neuroligin and neurexin. Behavioral deficits in Mdga mutant mice support genetic links to schizophrenia and autism spectrum disorders and raise the possibility of harnessing these interactions for therapeutic purposes.


Assuntos
Sinapses , Animais , Moléculas de Adesão Celular Neuronais , Compostos de Dansil , Galactosamina/análogos & derivados , Camundongos , Proteínas do Tecido Nervoso
10.
Neuron ; 98(4): 675-678, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772197

RESUMO

In this issue of Neuron, Zhang et al. (2018) report a powerful new method for probing subcellular microdomain-specific signaling in cellular function. Through a microdomain-targeting approach, they delineate how Ras-family GTPases balance signaling diversity with specificity required for various forms of hippocampal synaptic plasticity.


Assuntos
Hipocampo , Plasticidade Neuronal , Neurônios , Transdução de Sinais , Proteínas ras
11.
Cell Rep ; 21(13): 3637-3645, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281813

RESUMO

Synaptopathies contributing to neurodevelopmental disorders are linked to mutations in synaptic organizing molecules, including postsynaptic neuroligins, presynaptic neurexins, and MDGAs, which regulate their interaction. The role of MDGA1 in suppressing inhibitory versus excitatory synapses is controversial based on in vitro studies. We show that genetic deletion of MDGA1 in vivo elevates hippocampal CA1 inhibitory, but not excitatory, synapse density and transmission. Furthermore, MDGA1 is selectively expressed by pyramidal neurons and regulates perisomatic, but not distal dendritic, inhibitory synapses. Mdga1-/- hippocampal networks demonstrate muted responses to neural excitation, and Mdga1-/- mice are resistant to induced seizures. Mdga1-/- mice further demonstrate compromised hippocampal long-term potentiation, consistent with observed deficits in spatial and context-dependent learning and memory. These results suggest that mutations in MDGA1 may contribute to cognitive deficits through altered synaptic transmission and plasticity by loss of suppression of inhibitory synapse development in a subcellular domain- and cell-type-selective manner.


Assuntos
Cognição , Rede Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Inibição Neural , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/patologia , Deleção de Genes , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/deficiência , Sinapses/ultraestrutura , Transmissão Sináptica
12.
Neuron ; 91(5): 1052-1068, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608760

RESUMO

Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Proteínas Ligadas por GPI/fisiologia , Haploinsuficiência/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/biossíntese , Moléculas de Adesão de Célula Nervosa/genética , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Sinapses/metabolismo
13.
Neuropsychopharmacology ; 41(3): 802-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26171716

RESUMO

Calsyntenin-2 has an evolutionarily conserved role in cognition. In a human genome-wide screen, the CLSTN2 locus was associated with verbal episodic memory, and expression of human calsyntenin-2 rescues the associative learning defect in orthologous Caenorhabditis elegans mutants. Other calsyntenins promote synapse development, calsyntenin-1 selectively of excitatory synapses and calsyntenin-3 of excitatory and inhibitory synapses. We found that targeted deletion of calsyntenin-2 in mice results in a selective reduction in functional inhibitory synapses. Reduced inhibitory transmission was associated with a selective reduction of parvalbumin interneurons in hippocampus and cortex. Clstn2(-/-) mice showed normal behavior in elevated plus maze, forced swim test, and novel object recognition assays. However, Clstn2(-/-) mice were hyperactive in the open field and showed deficits in spatial learning and memory in the Morris water maze and Barnes maze. These results confirm a function for calsyntenin-2 in cognitive performance and indicate an underlying mechanism that involves parvalbumin interneurons and aberrant inhibitory transmission.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Transtornos Cognitivos/metabolismo , Interneurônios/metabolismo , Proteínas de Membrana/deficiência , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Comportamento Exploratório/fisiologia , Feminino , Imunofluorescência , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Técnicas de Cultura de Tecidos
14.
Neuroscientist ; 22(4): 359-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-25993993

RESUMO

Resolving how our brains encode information requires an understanding of the cellular processes taking place during memory formation. Since the 1970s, considerable effort has focused on determining the properties and mechanisms underlying long-term potentiation (LTP) at glutamatergic synapses and how these processes influence initiation of new memories. However, accumulating evidence suggests that long-term depression (LTD) of synaptic strength, particularly at glutamatergic synapses, is a bona fide learning and memory mechanism in the mammalian brain. The known range of mechanisms capable of inducing LTD has been extended to those including NMDAR-independent forms, neuromodulator-dependent LTD, synaptic depression following stress, and non-synaptically induced forms. The examples of LTD observed at the hippocampal CA1 synapse to date demonstrate features consistent with LTP, including homo- and heterosynaptic expression, extended duration beyond induction (several hours to weeks), and association with encoding of distinct types of memories. Canonical mechanisms through which synapses undergo LTD include activation of phosphatases, initiation of protein synthesis, and dynamic regulation of presynaptic glutamate release and/or postsynaptic glutamate receptor endocytosis. Here, we will discuss the pre- and postsynaptic changes underlying LTD, recent advances in the identification and characterization of novel mechanisms underlying LTD, and how engagement of these processes constitutes a cellular analog for the genesis of specific types of memories.


Assuntos
Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo , Memória/fisiologia , Neurônios/fisiologia , Animais , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Consolidação da Memória/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais , Sinapses/metabolismo , Sinapses/fisiologia
15.
Learn Mem ; 22(9): 461-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26286656

RESUMO

Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The mammalian hippocampus receives noradrenergic innervation and hippocampal neurons express ß-adrenergic receptors, which are known to play important roles in gating the induction of long-lasting forms of synaptic potentiation. These forms of long-term potentiation (LTP) are believed to importantly contribute to long-term storage of spatial and contextual memories in the brain. In this review, we highlight the contributions of noradrenergic signaling in general and ß-adrenergic receptors in particular, toward modulating hippocampal LTP. We focus on the roles of NE and ß-adrenergic receptors in altering the efficacies of specific signaling molecules such as NMDA and AMPA receptors, protein phosphatases, and translation initiation factors. Also, the roles of ß-adrenergic receptors in regulating synaptic "tagging" and "capture" of LTP within synaptic networks of the hippocampus are reviewed. Understanding the molecular and cellular bases of noradrenergic signaling will enrich our grasp of how the brain makes new, enduring memories, and may shed light on credible strategies for improving mental health through treatment of specific disorders linked to perturbed memory processing and dysfunctional noradrenergic synaptic transmission.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Receptores Adrenérgicos beta/metabolismo , Animais , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo
16.
J Med Chem ; 57(18): 7499-508, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25208139

RESUMO

G-protein-coupled receptor 119 (GPR119) is expressed predominantly in pancreatic ß-cells and in enteroendocrine cells in the gastrointestinal tract. GPR119 agonists have been shown to stimulate glucose-dependent insulin release by direct action in the pancreas and to promote secretion of the incretin GLP-1 by action in the gastrointestinal tract. This dual mechanism of action has generated significant interest in the discovery of small molecule GPR119 agonists as a potential new treatment for type 2 diabetes. Herein, we describe the discovery and optimization of a new class of pyridone containing GPR119 agonists. The potent and selective BMS-903452 (42) was efficacious in both acute and chronic in vivo rodent models of diabetes. Dosing of 42 in a single ascending dose study in normal healthy humans showed a dose dependent increase in exposure and a trend toward increased total GLP-1 plasma levels.


Assuntos
Descoberta de Drogas , Hipoglicemiantes/farmacologia , Terapia de Alvo Molecular , Piridonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/farmacologia , Animais , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Modelos Moleculares , Conformação Proteica , Piridonas/química , Piridonas/farmacocinética , Piridonas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/química , Sulfonas/química , Sulfonas/farmacocinética , Sulfonas/uso terapêutico
17.
Liver Int ; 34(3): 362-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23844567

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) has a rapidly progressive disease course associated with significant mortality. The prevalence of clinically significant cerebral oedema in ACLF is unknown. METHODS: We aimed to describe the prevalence of cerebral oedema in a cohort of ACLF adult (>18 years). We identified patients admitted to a single, specialist intensive care unit between January 2005 and January 2011 with high-grade hepatic encephalopathy (≥3) and a clinical picture of either ACLF or chronic liver disease (CLD). Patients who had undergone cranial CT imaging were identified and their imaging reviewed. The ACLF and CLD groups were compared. RESULTS: One thousand and eight patients with CLD were admitted. One hundred and seventy-three patients (110 male) underwent neuroimaging. Eighty-one (48 male) fulfilled criteria for ACLF. Variceal bleeding (30%) and sepsis (31%) were the most frequent precipitants of ACLF. Of those with neuroimaging from the total cohort, 30% of CT scans were normal, 30% demonstrated increased cerebral atrophy for age, 17% small vessel disease and 16% intracranial haemorrhage (ICH). Cerebral oedema was seen in three patients with ACLF only. An increased prevalence of ICH was observed in the ACLF group (23% vs. 9%, P = 0.008). CONCLUSION: The prevalence of clinically relevant cerebral oedema was low (4%) but fatal. Death was attributable to tonsillar herniation. An increased prevalence of ICH was seen in ACLF patients and remains an important differential.


Assuntos
Insuficiência Hepática Crônica Agudizada/mortalidade , Edema Encefálico/diagnóstico , Encefalopatia Hepática/complicações , Adulto , Idoso , Estudos de Coortes , Doença Hepática Terminal , Varizes Esofágicas e Gástricas/complicações , Feminino , Hemorragia Gastrointestinal/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Neuron ; 80(1): 113-28, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24094106

RESUMO

Perturbations of cell surface synapse-organizing proteins, particularly α-neurexins, contribute to neurodevelopmental and psychiatric disorders. From an unbiased screen, we identify calsyntenin-3 (alcadein-ß) as a synapse-organizing protein unique in binding and recruiting α-neurexins, but not ß-neurexins. Calsyntenin-3 is present in many pyramidal neurons throughout cortex and hippocampus but is most highly expressed in interneurons. The transmembrane form of calsyntenin-3 can trigger excitatory and inhibitory presynapse differentiation in contacting axons. However, calsyntenin-3-shed ectodomain, which represents about half the calsyntenin-3 pool in brain, suppresses the ability of multiple α-neurexin partners including neuroligin 2 and LRRTM2 to induce presynapse differentiation. Clstn3⁻/⁻ mice show reductions in excitatory and inhibitory synapse density by confocal and electron microscopy and corresponding deficits in synaptic transmission. These results identify calsyntenin-3 as an α-neurexin-specific binding partner required for normal functional GABAergic and glutamatergic synapse development.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Hipocampo/citologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Ratos , Receptores de Superfície Celular/metabolismo , Sinapses/genética
19.
Neuron ; 79(4): 680-95, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23911104

RESUMO

Selective synapse development determines how complex neuronal networks in the brain are formed. Complexes of postsynaptic neuroligins and LRRTMs with presynaptic neurexins contribute widely to excitatory synapse development, and mutations in these gene families increase the risk of developing psychiatric disorders. We find that LRRTM4 has distinct presynaptic binding partners, heparan sulfate proteoglycans (HSPGs). HSPGs are required to mediate the synaptogenic activity of LRRTM4. LRRTM4 shows highly selective expression in the brain. Within the hippocampus, we detected LRRTM4 specifically at excitatory postsynaptic sites on dentate gyrus granule cells. LRRTM4(-/-) dentate gyrus granule cells, but not CA1 pyramidal cells, exhibit reductions in excitatory synapse density and function. Furthermore, LRRTM4(-/-) dentate gyrus granule cells show impaired activity-regulated AMPA receptor trafficking. These results identifying cell-type-specific functions and multiple presynaptic binding partners for different LRRTM family members reveal an unexpected complexity in the design and function of synapse-organizing proteins.


Assuntos
Giro Denteado/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Guanilato Quinases , Proteoglicanas de Heparan Sulfato/genética , Humanos , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/ultraestrutura , Transporte Proteico/genética , Ratos , Receptores de AMPA/metabolismo , Sinapses/ultraestrutura , Sinapsinas/metabolismo
20.
Learn Mem ; 19(11): 535-42, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077334

RESUMO

Encoding new information requires dynamic changes in synaptic strength. The brain can boost synaptic plasticity through the secretion of neuromodulatory substances, including acetylcholine and noradrenaline. Considerable effort has focused on elucidating how neuromodulatory substances alter synaptic properties. However, determination of the potential synergistic interactions between different neuromodulatory systems remains incomplete. Previous results indicate that coactivation of ß-adrenergic and cholinergic receptors facilitated the conversion of STP to LTP through an extracellular signal-regulated kinase (ERK)-dependent mechanism. ERK signaling has been linked to synaptically localized translation regulation. Thus, we hypothesized that costimulation of noradrenergic and cholinergic receptors could initiate the transformation of STP to LTP through up-regulation of protein synthesis. Our results indicate that a protocol which yields STP (5 Hz, 5 sec) when paired with coapplication of the ß-adrenergic agonist, isoproterenol (ISO), and the cholinergic agonist, carbachol (CCh), induces translation-dependent LTP in mouse CA1. This form of LTP requires both ß1-adrenergic and M1 muscarinic receptor activation, as blocking either receptor subtype prevented LTP induction. Blocking ERK, mTOR, or translation reduced the expression of LTP induced with ISO + CCh. Taken together, our data demonstrate that coactivation of ß-adrenergic and muscarinic receptors facilitates the conversion of STP to LTP through a mechanism requiring translation initiation.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores Muscarínicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...