Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2300480, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831745

RESUMO

Xenohormesis proposes that phytochemicals produced to combat stressors in the host plant exert biochemical effects in animal cells lacking cognate receptors. Xenohormetic phytochemicals such as flavonoids and phytoalexins modulate a range of human cell signaling mechanisms but functional correlations with human pathophysiology are lacking. Here, potent inhibitory effects of grapefruit-derived Naringenin (Nar) and soybean-derived Glyceollins (Gly) in human microphysiological models of bulk tissue vasculogenesis and tumor angiogenesis are reported. Despite this interference of vascular morphogenesis, Nar and Gly are not cytotoxic to endothelial cells and do not prevent cell cycle entry. The anti-vasculogenic effects of Glyceollin are significantly more potent in sex-matched female (XX) models. Nar and Gly do not decrease viability or expression of proangiogenic genes in triple negative breast cancer (TNBC) cell spheroids, suggesting that inhibition of sprouting angiogenesis by Nar and Gly in a MPS model of the (TNBC) microenvironment are mediated via direct effects in endothelial cells. The study supports further research of Naringenin and Glyceollin as health-promoting agents with special attention to mechanisms of action in vascular endothelial cells and the role of biological sex, which can improve the understanding of dietary nutrition and the pharmacology of phytochemical preparations.

2.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546849

RESUMO

Progress toward the development of sex-specific tissue engineered systems has been hampered by the lack of research efforts to define the effects of sex-specific hormone concentrations on relevant human cell types. Here, we investigated the effects of defined concentrations of estradiol (E2) and dihydrotestosterone (DHT) on primary human dermal and lung fibroblasts (HDF and HLF), and human umbilical vein endothelial cells (HUVEC) from female (XX) and male (XY) donors in both 2D expansion cultures and 3D stromal vascular tissues. Sex-matched E2 and DHT stimulation in 2D expansion cultures significantly increased the proliferation index, mitochondrial membrane potential, and the expression of genes associated with bioenergetics (Na+/K+ ATPase, somatic cytochrome C) and beneficial stress responses (chaperonin) in all cell types tested. Notably, cross sex hormone stimulation, i.e., DHT treatment of XX cells in the absence of E2 and E2 stimulation of XY cells in the absence of DHT, decreased bioenergetic capacity and inhibited cell proliferation. We used a microengineered 3D vasculogenesis assay to assess hormone effects on tissue scale morphogenesis. E2 increased metrics of vascular network complexity compared to vehicle in XX tissues. Conversely, and in line with results from 2D expansion cultures, E2 potently inhibited vasculogenesis compared to vehicle in XY tissues. DHT did not significantly alter vasculogenesis in XX or XY tissues but increased the number of non-participating endothelial cells in both sexes. This study establishes a scientific rationale and adaptable methods for using sex hormone stimulation to develop sex-specific culture systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...