Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (20)2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19078938

RESUMO

The horseshoe crab has the best-characterized immune system of any long-lived invertebrate. The study of immunity in horseshoe crabs has been facilitated by the ease in collecting large volumes of blood and from the simplicity of the blood. Horseshoe crabs show only a single cell type in the general circulation, the granular amebocyte. The plasma has the salt content of sea water and only three abundant proteins, hemocyanin, the respiratory protein, the C-reactive proteins, which function in the cytolytic destruction of foreign cells, including bacterial cells, and alpha2-macroglobulin, which inhibits the proteases of invading pathogens. Blood is collected by direct cardiac puncture under conditions that minimize contamination by lipopolysaccharide (a.k.a., endotoxin, LPS), a product of the Gram-negative bacteria. A large animal can yield 200 - 400 mL of blood. For the study of the plasma, blood cells are immediately removed from the plasma by centrifugation and the plasma can then be fractionated into its constituent proteins. The blood cells are conveniently studied microscopically by collecting small volumes of blood into LPS-free isotonic saline (0.5 M NaCl) under conditions that permit direct microscopic examination by placing one of more LPS-free coverglasses on the culture dish surface, then mounting those coverglasses in simple observation chambers following cell attachment. A second preparation for direct observation is to collect 3 - 5 mL of blood in a LPS-free embryo dish and then explanting fragments of aggregated amebocytes to a chamber that sandwiches the tissue between a slide and a coverglass. In this preparation, the motile amebocytes migrate onto the coverglass surface, where they can readily be observed. The blood clotting system involves aggregation of amebocytes and the formation of an extracellular clot of a protein, coagulin, which is released from the secretory granules of the blood cells. Biochemical analysis of washed blood cells requires that aggregation and degranulation does not occur, which can be accomplished by collecting blood into 0.1 volumes of 2% Tween-20, 0.5 M LPS-free NaCl, followed by centrifugation of the cells and washing with 0.5 M NaCl.


Assuntos
Células Sanguíneas/citologia , Coleta de Amostras Sanguíneas/métodos , Caranguejos Ferradura/fisiologia , Animais , Centrifugação/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-16707269

RESUMO

Lipopolysaccharide (LPS, endotoxin) is a component of Gram-negative bacteria and is the principal indicator to the innate immune systems of higher animals of a Gram-negative bacterial invasion. LPS activates the blood clotting system of the American horseshoe crab, Limulus polyphemus. By stimulating blood cell degranulation, LPS triggers the release of the proteins of the clotting system from the cells, and by activating a protease cascade that converts coagulogen, a soluble zymogen, to coagulin, the structural protein of the clot, LPS triggers the production of the fibrillar coagulin blood clot. Although originally thought to be restricted to the Gram-negative bacteria and the cyanobacteria, LPS, or a very similar molecule, has recently been described from a eukaryotic green alga, Chlorella. Here we show that, like LPS from Gram-negative bacteria, the algal molecule stimulates exocytosis of the Limulus blood cell and the clotting of coagulin. The coagulin clot efficiently entraps the cells of Chlorella in a network of fibrils. Invasion and erosion of the carapace by green algae is an important cause of mortality of Limulus, and it is suggested that the cellular response to aLPS may contribute to defense against this pathogen.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Chlorella , Caranguejos Ferradura/imunologia , Lipopolissacarídeos/farmacologia , Animais , Células Sanguíneas/efeitos dos fármacos , Células Cultivadas , Exocitose/efeitos dos fármacos , Caranguejos Ferradura/citologia , Caranguejos Ferradura/efeitos dos fármacos , Imunidade Inata
3.
Biol Bull ; 207(1): 56-66, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15315943

RESUMO

One of the major functions of circulating Limulus amebocytes is to effect blood coagulation upon receipt of appropriate signals. However, the hypothesis that Limulus amebocytes are fundamentally similar to vertebrate thrombocytes and platelets has not been tested sufficiently in previous studies of their cytoskeletal organization. Whereas the earlier data were derived from transmission electron microscopy (TEM) of thin sections of a limited number of cells, improved fluorescence labeling methods that retain cell morphology have now enabled us to survey F-actin and microtubule organization in intact individual amebocytes and in large amebocyte populations pre- and post-activation. Anti-tubulin immunofluorescence showed the marginal band (MB) of microtubules to be ellipsoidal in most unactivated cells, with essentially no other microtubules present. However, minor subpopulations of cells with discoidal or pointed shape, containing corresponding arrangements of microtubules suggestive of morphogenetic intermediates, were also observed. Texas-red phalloidin labeled an F-actin-rich cortex in unactivated amebocytes, accounting for MB and granule separation from the plasma membrane as visualized in TEM thin sections, and supporting earlier models for MB maintenance of flattened amebocyte morphology by pressure against a cortical layer. Shape transformation after activation by bacterial lipopolysaccharide was attributable principally to spiky and spreading F-actin in outer cell regions, with the MB changing to twisted, nuclei-associated forms and eventually becoming unrecognizable. These major pre- and post-activation cytoskeletal features resemble those of platelets and non-mammalian vertebrate thrombocytes, supporting recognition of the Limulus amebocyte as a representative evolutionary precursor of more specialized clotting cell types.


Assuntos
Actinas/fisiologia , Células Sanguíneas/citologia , Coagulação Sanguínea/fisiologia , Caranguejos Ferradura/fisiologia , Microtúbulos/fisiologia , Animais , Células Sanguíneas/fisiologia , Células Sanguíneas/ultraestrutura , Tamanho Celular/fisiologia , Imunofluorescência , Corantes Fluorescentes , Caranguejos Ferradura/citologia , Glicoproteínas de Membrana , Microscopia Eletrônica , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...