Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 103: 109-123, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27448036

RESUMO

Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption.


Assuntos
Esgotos , Águas Residuárias , Eletricidade , Filtração , Eliminação de Resíduos Líquidos , Água
2.
Water Res ; 100: 194-200, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192354

RESUMO

The significant risk of ohmic heating and the high electric energy consumption at terminal stages of the dewatering are two problems that hamper the development of the electro-dewatering (EDW) technology. In the future prospect of studying these two issues, it is important to provide and analyse quantitative data relative to the behavior of the electric resistance in EDW. It was the main goal of this study. It showed that the electric resistance of the complete system (cake + filter cloth) depended on the cake dryness. It increased sharply when the solids content exceeded around 45%.The solids loading also influenced the apparent resistance at the beginning of the process. The electric resistance of the filter cloth represented about 20% of the total resistance. It remained relatively constant over the process except at the terminal stage where it generally increased sharply. The use of conductive filter, such as metallic cloth, enabled to decrease the electric resistance and reduce the energy consumption of the process. The electric resistance decreased across the cake from the anode to the cathode. This behavior may be explained by several phenomena such as the ions migration and their interaction with the solid, the decrease of dry solids content from the anode to the cathode and the gas presence at the anode (due to electrolysis reaction).


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Impedância Elétrica , Eletricidade , Eletrólise
3.
Water Res ; 82: 66-77, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26304592

RESUMO

Compared to conventional dewatering techniques, electrical assisted mechanical dewatering, also called electro-dewatering (EDW) is an alternative and an effective technology for the dewatering of sewage sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and to determine the influence of the process parameters (e.g. applied electric current, applied voltage, and the initial amount of dry solids) on the kinetics of EDW-process for activated urban sludge. Also significant efforts have been devoted herein to provide comprehensive information about the EDW mechanisms and to understand the relationship between these operating conditions with regards to develop a qualitative and quantitative understanding model of the electro-dewatering process and then produce a robust design methodology. The results showed a very strong correlation between the applied electric current and the filtrate flow rate and consequently the electro-dewatering kinetics. A higher applied electric current leads to faster EDW kinetics and a higher final dry solids content. In contrast, the results of this work showed a significant enhancement of the dewatering kinetics by decreasing the mass of the dry solids introduced into the cell (commonly known as the sludge loading).


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Eletricidade , Filtração , Cinética , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...