Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Exp Bot ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676562

RESUMO

Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimising DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/ oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (.O2-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest ROS are a critical component of the feedback loops that control stem cell identity and fate and suggest that the ROS/hypoxia interface is an important "outside/ in" positional cue for plant cells, particularly in meristems.

3.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38501881

RESUMO

Grapevine leafroll disease is a viral disease that affects grapevines (Vitis vinifera L.) and has a severe economic impact on viticulture. In this study, the effect of grapevine leafroll-associated viruses (GLRaV) on berry quality was investigated in clones of cultivar cv. Crimson Seedless table grapes infected with GLRaV. RT-PCR confirmed the identity of the clones: clone 3236, infected only with GLRaV-3 (termed single); clone 3215, infected with GLRaV-3, GLRaV-4 strain 9 and grapevine virus A (termed mixed); and a viral free clone of the same genetic background of the infected clones (termed control). The berry quality indices of size, sugar, acidity and anthocyanin content were measured at harvest maturity. RT-qPCR was used to determine the viral load. The study was repeated over 2 year. A two-way, multivariate analysis of variance was applied with clone and year as independent variables and the measured berry quality parameters as a dependent variable. All dependent variables were significantly affected by viral infection (Wilks, λ, (2,33) = 0.033895, P-value <0.001), while only titratable acidity was affected by year. The average berry dry mass decreased (P-value <0.001). The water content of both infected clones was greater than that of the control (P-value <0.001). Both infected clones displayed reduced sugar content as a fraction of the berry dry mass (P-value <0.001). The anthocyanin and the phenol content of the infected clones were significantly reduced compared with the control clone (P < 0.001, P < 0.05, clone 3236 and clone 3215, respectively). Finally, the viral load was highly variable, and no quantitative relationship between viral load and berry composition was found.


Assuntos
Closteroviridae , Frutas , Doenças das Plantas , Carga Viral , Vitis , Vitis/virologia , Vitis/crescimento & desenvolvimento , Vitis/genética , Frutas/virologia , Frutas/crescimento & desenvolvimento , Closteroviridae/fisiologia , Closteroviridae/genética , Doenças das Plantas/virologia , Antocianinas/metabolismo , Antocianinas/análise
4.
Antioxidants (Basel) ; 12(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37507870

RESUMO

Hydrogen cyanamide (HC) has been widely used in horticulture to trigger bud burst following dormancy. Its use has been banned in some countries due to human health concerns, however the search for effective safe alternatives is delayed by lack of knowledge of the mechanism of HC action. Earlier studies demonstrate that HC stimulates the production of reactive oxygen species (ROS) and alters the rate of cell division. However, the relationships between HC effects on ROS, redox (reduction/oxidation) homeostasis and cell division are unknown. This study used Arabidopsis thaliana ((L.) Heynh.) seedlings expressing the redox reporter roGFP2 to measure the oxidation states of the nuclei and cytosol in response to HC treatment. The Cytrap dual cell cycle phase marker system and flow cytometry were used to study associated changes in cell proliferation. HC (1.5 mM) reversibly inhibited root growth during a 24 h treatment. Higher concentrations were not reversible. HC did not synchronise the cell cycle, in contrast to hydroxyurea. Rather, HC caused a gradual accumulation of cells in the G2/M phase and decline of G1/S phase cells, 16 to 24 h post-treatment. This was accompanied by increased oxidation of both the nuclei and cytosol. Taken together, these findings show that HC impairs proliferation of embryonic root meristem cells in a reversible manner through restriction of G2/M transition accompanied by increased cellular oxidation.

5.
Proc Nutr Soc ; 82(4): 468-477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288524

RESUMO

Three-dimensional (3D) food printing is a rapidly emerging technology offering unprecedented potential for customised food design and personalised nutrition. Here, we evaluate the technological advances in extrusion-based 3D food printing and its possibilities to promote healthy and sustainable eating. We consider the challenges in implementing the technology in real-world applications. We propose viable applications for 3D food printing in health care, health promotion and food waste upcycling. Finally, we outline future work on 3D food printing in food safety, acceptability and economics, ethics and regulations.


Assuntos
Perda e Desperdício de Alimentos , Alimentos , Impressão Tridimensional , Estado Nutricional
6.
Plant J ; 114(5): 1132-1148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994639

RESUMO

Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.


Assuntos
Plantas , Transdução de Sinais , Plantas/genética , Plantas/metabolismo , Divisão Celular , Metabolismo dos Carboidratos
7.
Tree Physiol ; 43(4): 675-689, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36637421

RESUMO

The regulation of DNA accessibility by histone modification has emerged as a paradigm of developmental and environmental programming. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a versatile tool to investigate in vivo protein-DNA interaction and has enabled advances in mechanistic understanding of physiologies. The technique has been successfully demonstrated in several plant species and tissues; however, it has remained challenging in woody tissues, in particular complex structures such as perennating buds. Here we developed a ChIP method specifically for mature dormant buds of grapevine (Vitis vinifera cv. Cabernet Sauvignon). Each step of the protocol was systematically optimized, including crosslinking, chromatin extraction, sonication and antibody validation. Analysis of histone H3-enriched DNA was performed to evaluate the success of the protocol and identify occupancy of histone H3 along grapevine bud chromatin. To our best knowledge, this is the first ChIP experiment protocol optimized for the grapevine bud system.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Vitis , Histonas/genética , Madeira , Cromatina , Vitis/genética
8.
Plant Cell Environ ; 46(2): 379-390, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479711

RESUMO

Yield losses due to nutrient deficiency are estimated as the primary cause of the yield gap worldwide. Understanding how plant roots perceive external nutrient status and elaborate morphological adaptations in response to it is necessary to develop reliable strategies to increase crop yield. In the last decade, reactive oxygen species (ROS) were shown to be key players of the mechanisms underlying root responses to nutrient limitation. ROS contribute in multiple ways to shape the root system in response to nutritional cues, both as direct effectors acting on cell wall architecture and as second messengers in signalling pathways. Here, we review the mutual interconnections existing between perception and signalling of the most common forms of the major macronutrients (nitrogen, phosphorus and potassium), and ROS in shaping plant root system architecture. We discuss recent advances in dissecting the integration of these elements and their impact on morphological traits of the root system, highlighting the functional ductility of ROS and enzymes implied in ROS metabolism, such as class III peroxidases.


Assuntos
Fósforo , Raízes de Plantas , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fósforo/metabolismo , Fenótipo , Nutrientes , Nitrogênio/metabolismo
9.
Front Plant Sci ; 13: 834977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283905

RESUMO

Whether the division of cells of a dormant meristem may be arrested, e.g., in the G1 phase, has proven to be an extremely difficult hypothesis to test. This is particularly so for woody perennial buds, where dormant and quiescent states are diffuse, and the organ may remain visibly unchanged for 6-9 months of the year. Flow cytometry (FCM) has been widely applied in plant studies to determine the genome size and endopolyploidy. In this study, we present the application of FCM to measure the cell cycle status in mature dormant buds of grapevine (Vitis vinifera cv. Cabernet Sauvignon), which represent a technically recalcitrant structure. This protocol illustrates the optimisation and validation of FCM data analysis to calculate the cell cycle status, or mitotic index, of dormant grapevine buds. We have shown how contamination with debris can be experimentally managed and give reference to the more malleable tomato leaves. We have also given a clear illustration of the primary pitfalls of data analysis to avoid artefacts or false results. Data acquisition and analysis strategies are detailed and can be readily applied to analyse FCM data from other recalcitrant plant samples.

10.
J Exp Bot ; 73(7): 2061-2076, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35022731

RESUMO

Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.


Assuntos
Dormência de Plantas , Vitis , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Dormência de Plantas/genética , Estações do Ano , Vitis/metabolismo
11.
J Exp Bot ; 72(16): 5795-5806, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34106236

RESUMO

Plant growth is mediated by cell proliferation and expansion. Both processes are controlled by a network of endogenous factors such as phytohormones, reactive oxygen species (ROS), sugars, and other signals, which influence gene expression and post-translational regulation of proteins. Stress resilience requires rapid and appropriate responses in plant growth and development as well as defence. Regulation of ROS accumulation in different cellular compartments influences growth responses to abiotic and biotic stresses. While ROS are essential for growth, they are also implicated in the stress-induced cessation of growth and, in some cases, programmed cell death. It is widely accepted that redox post-translational modifications of key proteins determine the growth changes and cell fate responses to stress, but the molecular pathways and factors involved remain poorly characterized. Here we discuss ROS as a signalling molecule, the mechanisms of ROS-dependent regulation that influence protein-protein interactions, protein function, and turnover, together with the relocation of key proteins to different intracellular compartments in a manner that can alter cell fate. Understanding how the redox interactome responds to stress-induced increases in ROS may provide a road map to tailoring the dynamic ROS interactions that determine growth and cell fate in order to enhance stress resilience.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Plantas , Espécies Reativas de Oxigênio , Estresse Fisiológico
12.
Plant Physiol ; 186(1): 79-92, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793863

RESUMO

Oxygen and reactive oxygen species (ROS) have been co-opted during evolution into the regulation of plant growth, development, and differentiation. ROS and oxidative signals arising from metabolism or phytohormone-mediated processes control almost every aspect of plant development from seed and bud dormancy, liberation of meristematic cells from the quiescent state, root and shoot growth, and architecture, to flowering and seed production. Moreover, the phytochrome and phytohormone-dependent transmissions of ROS waves are central to the systemic whole plant signaling pathways that integrate root and shoot growth. The sensing of oxygen availability through the PROTEOLYSIS 6 (PRT6) N-degron pathway functions alongside ROS production and signaling but how these pathways interact in developing organs remains poorly understood. Considerable progress has been made in our understanding of the nature of hydrogen peroxide sensors and the role of thiol-dependent signaling networks in the transmission of ROS signals. Reduction/oxidation (redox) changes in the glutathione (GSH) pool, glutaredoxins (GRXs), and thioredoxins (TRXs) are important in the control of growth mediated by phytohormone pathways. Although, it is clear that the redox states of proteins involved in plant growth and development are controlled by the NAD(P)H thioredoxin reductase (NTR)/TRX and reduced GSH/GRX systems of the cytosol, chloroplasts, mitochondria, and nucleus, we have only scratched the surface of this multilayered control and how redox-regulated processes interact with other cell signaling systems.


Assuntos
Oxigênio/metabolismo , Desenvolvimento Vegetal/fisiologia , Espécies Reativas de Oxigênio/metabolismo
13.
Physiol Plant ; 172(2): 405-418, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32880966

RESUMO

Drought stress is the main limiting factor for global soybean growth and production. Genetic improvement for water and nutrient uptake efficiency is critical to advance tolerance and enable more sustainable and resilient production, underpinning yield growth. The identification of quantitative traits and genes related to water and nutrient uptake will enhance our understanding of the mechanisms of drought tolerance in soybean. This review summarizes drought stress in the context of the physiological traits that enable effective acclimation, with a particular focus on roots. Genes controlling root system architecture play an important role in water and nutrient availability, and therefore important targets for breeding strategies to improve drought tolerance. This review highlights the candidate genes that have been identified as regulators of important root traits and responses to water stress. Progress in our understanding of the function of particular genes, including GmACX1, GmMS and GmPEPCK are discussed in the context of developing a system-based platform for genetic improvement of drought tolerance in soybean.


Assuntos
Fabaceae , Glycine max , Secas , Raízes de Plantas/genética , Glycine max/genética , Água
14.
Food Funct ; 11(8): 7115-7125, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32744555

RESUMO

INTRODUCTION: Apples, an important contributor to total dietary phenolic intake, are associated with cardiovascular health benefits. Determining the phenolic composition of apples, their individual variation across varieties, and the phenolic compounds present in plasma after apple consumption is integral to understanding the effects of apple phenolics on cardiovascular health. METHODS: Using liquid chromatography we quantified five important polyphenols and one phenolic acid with potential health benefits: quercetin glycosides, (-)-epicatechin, procyanidin B2, phloridzin, anthocyanins, and chlorogenic acid, in the skin and flesh of 19 apple varieties and 72 breeding selections from the Australian National Apple Breeding program. Furthermore, we measured the phenolic compounds in the plasma of 30 individuals post-consumption of an identified phenolic-rich apple, Cripp's Pink. RESULTS: Considerable variation in concentration of phenolic compounds was found between genotypes: quercetin (mean ± SD: 16.1 ± 5.9, range: 5.8-30.1 mg per 100 g); (-)-epicatechin (mean ± SD: 8.6 ± 5.8, range: 0.2-19.8 mg per 100 g); procyanidin B2 (mean ± SD: 11.5 ± 6.6, range: 0.5-26.5 mg per 100 g); phloridzin (mean ± SD: 1.1 ± 0.6, range: 0.3-4.3 mg per 100 g); anthocyanins (mean ± SD: 1.8 ± 4.4, range: 0-40.8 mg per 100 g); and chlorogenic acid (mean ± SD: 11.3 ± 9.9, range: 0.4-56.0 mg per 100 g). All phenolic compounds except chlorogenic acid were more concentrated in the skin compared with flesh. We observed a significant increase, with wide variation, in 14 phenolic compounds in plasma post-consumption of a phenolic-rich apple. CONCLUSION: This information makes an important contribution to understanding the potential health benefits of apples.


Assuntos
Frutas/química , Malus/química , Malus/classificação , Fenóis/análise , Adulto , Idoso , Antocianinas/análise , Austrália , Biflavonoides/análise , Glicemia , Catequina/análise , Ácido Clorogênico/análise , Colesterol/sangue , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Florizina/análise , Extratos Vegetais/análise , Polifenóis/análise , Proantocianidinas/análise , Quercetina/análise , Circunferência da Cintura , Adulto Jovem
15.
J Exp Bot ; 71(2): 719-729, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31037309

RESUMO

The physiological constraints on bud burst in woody perennials, including vascular development and oxygenation, remain unresolved. Both light and tissue oxygen status have emerged as important cues for vascular development in other systems; however, grapevine buds have only a facultative light requirement, and data on the tissue oxygen status have been confounded by the spatial variability within the bud. Here, we analysed apoplastic development at early stages of grapevine bud burst and combined molecular modelling with histochemical techniques to determine the pore size of cell walls in grapevine buds. The data demonstrate that quiescent grapevine buds were impermeable to apoplastic dyes (acid fuchsin and eosin Y) until after bud burst was established. The molecular exclusion size was calculated to be 2.1 nm, which would exclude most macromolecules except simple sugars and phytohormones until after bud burst. We used micro-computed tomography to demonstrate that tissue oxygen partial pressure data correlated well with structural heterogeneity of the bud and differences in tissue density, confirming that the primary bud complex becomes rapidly and preferentially oxygenated during bud burst. Taken together, our results reveal that the apoplastic porosity is highly regulated during the early stages of bud burst, suggesting a role for vascular development in the initial, rapid oxygenation of the primary bud complex.


Assuntos
Benzenossulfonatos/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Luz , Oxigênio , Vitis/metabolismo , Transporte Biológico , Poro Nuclear/metabolismo , Vitis/crescimento & desenvolvimento , Microtomografia por Raio-X
16.
Plant Cell Environ ; 42(1): 373-385, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329164

RESUMO

The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume-based farming is particularly important in Africa, where small-scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land-use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful "soybean bonanza" across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.


Assuntos
Produção Agrícola , Grão Comestível , Glycine max , África , Mudança Climática/estatística & dados numéricos , Produção Agrícola/estatística & dados numéricos , Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Previsões , Modelos Estatísticos , Glycine max/crescimento & desenvolvimento
17.
Front Plant Sci ; 9: 654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29809202

RESUMO

[This corrects the article on p. 296 in vol. 9, PMID: 29593760.].

18.
Front Plant Sci ; 9: 296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593760

RESUMO

Nitric oxide (⋅NO) is known to attenuate dormancy and promote germination, a function that seemingly depends on crosstalk with the abscisic acid (ABA) signaling network. In the past 2 years, a number of independent studies have revealed that ⋅NO gates the ABA signaling network at multiple steps, ensuring redundant and effectively irreversible control of germination. Here we summarize the recent studies, and propose a model of the multiple functions of ⋅NO in seed dormancy.

19.
Plant Cell Environ ; 41(5): 1154-1170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336037

RESUMO

Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oxigênio/metabolismo , Vitis/fisiologia , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Dormência de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...