Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 285(15): 11557-71, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20103592

RESUMO

The plant growth-repressing DELLA proteins (DELLAs) are known to represent a convergence point in integration of multiple developmental and environmental signals in planta, one of which is hormone gibberellic acid (GA). Binding of the liganded GA receptor (GID1/GA) to the N-terminal domain of DELLAs is required for GA-induced degradation of DELLAs via the ubiquitin-proteasome pathway, thus derepressing plant growth. However, the conformational changes of DELLAs upon binding to GID1/GA, which are the key to understanding the precise mechanism of GID1/GA-mediated degradation of DELLAs, remain unclear. Using biophysical, biochemical, and bioinformatics approaches, we demonstrated for the first time that the unbound N-terminal domains of DELLAs are intrinsically unstructured proteins under physiological conditions. Within the intrinsically disordered N-terminal domain of DELLAs, we have identified several molecular recognition features, sequences known to undergo disorder-to-order transitions upon binding to interacting proteins in intrinsically unstructured proteins. In accordance with the molecular recognition feature analyses, we have observed the binding-induced folding of N-terminal domains of DELLAs upon interaction with AtGID1/GA. Our results also indicate that DELLA proteins can be divided into two subgroups in terms of their molecular compactness and their interactions with monoclonal antibodies.


Assuntos
Proteínas de Arabidopsis/química , Giberelinas/química , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais
2.
J Agric Food Chem ; 56(21): 10218-24, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18937489

RESUMO

The interactions of whey protein isolate (WPI) and flavor compounds (2-nonanone, 1-nonanal, and trans-2-nonenal) were investigated, and the influence of flavor compound structure and heat and high pressure denaturation on the interactions were determined by using headspace solid-phase microextraction (SPME) and gas chromatography (GC). The binding of WPI and the flavor compounds decreased in the order trans-2-nonenal > 1-nonanal > 2-nonanone. The differences in binding can be explained with hydrophobic interactions only in the case of 2-nonanone, whereas the aldehydes, in particular trans-2-nonenal, can also react covalently. Heat and high pressure treatment affected protein-flavor interactions depending on the structure of the flavor compound. Upon both heat and high pressure denaturation, the binding of 2-nonanone to WPI decreased, while the binding of 1-nonanal remained unchanged, and the affinity for trans-2-nonenal increased rapidly. The results suggest that hydrophobic interactions are weakened upon heat or high pressure denaturation, whereas covalent interactions are enhanced.


Assuntos
Aldeídos/química , Aromatizantes/metabolismo , Cetonas/química , Proteínas do Leite/metabolismo , Animais , Bovinos , Aromatizantes/química , Temperatura Alta , Proteínas do Leite/química , Proteínas do Leite/isolamento & purificação , Pressão , Ligação Proteica , Microextração em Fase Sólida , Proteínas do Soro do Leite
3.
J Agric Food Chem ; 55(9): 3599-604, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17411067

RESUMO

Interactions of the model flavor compound 2-nonanone with individual milk proteins, whey protein isolate (WPI), and sodium caseinate in aqueous solutions were investigated. A method to quantify the free 2-nonanone was developed using headspace solid-phase microextraction followed by gas chromatography with flame ionization detection. Binding constants (K) and numbers of binding sites (n) for 2-nonanone on the individual proteins were calculated. The 2-nonanone binding capacities decreased in the order bovine serum albumin > beta-lactoglobulin > alpha-lactalbumin > alpha s1-casein > beta-casein, and the binding to WPI was stronger than the binding to sodium caseinate. All proteins appeared to have one binding site for 2-nonanone per molecule of protein at the flavor concentrations investigated, except for bovine serum albumin, which possessed two classes of binding sites. The binding mechanism is believed to involve predominantly hydrophobic interactions.


Assuntos
Cetonas/metabolismo , Proteínas do Leite/metabolismo , Caseínas/metabolismo , Ligação Proteica , Soluções , Água , Proteínas do Soro do Leite
4.
J Agric Food Chem ; 53(24): 9590-601, 2005 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16302782

RESUMO

Whey protein concentrate solutions (12% w/v, pH 6.65 +/- 0.05) were pressure treated at 800 MPa for 20-120 min and then examined using size exclusion chromatography (SEC), small deformation rheology, transmission electron microscopy, and various types of one-dimensional (1D) and two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE). The pressure-treated samples showed a time-dependent loss of native whey proteins by SEC and 1D PAGE and a corresponding increase in non-native proteins and protein aggregates of different sizes. These aggregates altered the viscosity and opacity of the samples and were shown to be cross-linked by intermolecular disulfide bonds and by noncovalent interactions using 1D PAGE [alkaline (or native), sodium dodecyl sulfate (SDS), and SDS of reduced samples (SDS(R))] and 2D PAGE (native:SDS and SDS:SDS(R)). The sensitivity of the major whey proteins to pressure was in the order beta-lactoglobulin B (beta-LG B) > beta-LG A > bovine serum albumin (BSA) > alpha-lactalbumin (alpha-LA), and the large internal hydrophobic cavity of beta-LG may have been partially responsible for its sensitivity to high-pressure treatments. It seemed likely that, at 800 MPa, the formation of a beta-LG disulfide-bonded network preceded the formation of disulfide bonds between alpha-LA or BSA and beta-LG to form multiprotein aggregates, possibly because the disulfide bonds of alpha-LA and BSA are less exposed than those of beta-LG either during or after pressure treatment. It may be possible that intermolecular disulfide bond formation occurred at high pressure and that hydrophobic association became important after the high-pressure treatment.


Assuntos
Proteínas do Leite/química , Dobramento de Proteína , Cromatografia em Gel , Reagentes de Ligações Cruzadas , Dissulfetos/química , Eletroforese em Gel de Poliacrilamida , Pressão Hidrostática , Microscopia Eletrônica , Soluções , Viscosidade , Proteínas do Soro do Leite
5.
J Agric Food Chem ; 53(20): 8010-8, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16190664

RESUMO

Bovine beta-lactoglobulin B (beta-LG) is susceptible to pressure treatment, which unfolds it, allowing thiol-catalyzed disulfide bond interchange to occur, facilitating intermolecular bonding (both noncovalent and disulfide). In the present study, beta-LG was mixed with sodium dodecyl sulfate (SDS), all-trans-retinol (retinol), or 8-anilino-1-naphthalenesulfonate (ANS) on a 1:1.1 molar basis, and aliquots were held at pressures between 50 and 800 MPa for 30 min at pH 7.2 and 20 degrees C. Polyacrylamide gel electrophoresis (PAGE) showed that beta-LG alone (control) was converted into a non-native monomer and a series of dimers, trimers, etc., at pressures beyond 100 MPa; SDS inhibited the formation of non-native species up to 200 MPa, and neither retinol nor ANS inhibited the formation of the non-native species as effectively as SDS. At pressures beyond 350 MPa, SDS ceased to have any inhibitory effect, but both ANS and retinol showed significant inhibition. The near- and far-UV CD patterns and the ANS fluorescent data were consistent with the PAGE data, but the retinol fluorescent data did not show sufficient change to interpret. The results suggested that there were three discernible structural stages. In Stage I (0.1-150 MPa), the native structure is stable; in Stage II (200-450 MPa), the native monomer is reversibly interchanging with non-native monomers and disulfide-bonded dimers; and in Stage III (>500 MPa), the free CysH in non-native monomer and dimer interacts with -S-S- bonds to produce high molecular weight aggregates of beta-LG. SDS inhibited the Stage I to Stage II transition at 200 MPa, and ANS and retinol inhibited the Stage II to Stage III transition at 600 MPa.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Lactoglobulinas/química , Dodecilsulfato de Sódio/metabolismo , Vitamina A/metabolismo , Fenômenos Químicos , Físico-Química , Dimerização , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes , Lactoglobulinas/metabolismo , Ligantes , Polímeros/metabolismo , Pressão , Dobramento de Proteína
6.
J Agric Food Chem ; 53(8): 3197-205, 2005 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15826078

RESUMO

Heat treatment of bovine beta-lactoglobulin B (beta-LG) causes it to partially unfold and aggregate via hydrophobic association and intra- and interprotein disulfide bonds. The first stage, which involves a "loosening" of the native structure, is influenced by the environmental conditions, such as pressure, pH, and added solutes. In the present study, four potential beta-LG ligands [palmitate, sodium dodecyl sulfate (SDS), 8-anilino-1-naphthalenesulfonate (ANS), and all-trans-retinol (retinol)] were added to beta-LG solutions prior to heat treatment for 12 min at temperatures between 40 and 93 degrees C. The extent of the changes in secondary and tertiary structures, unfolding, and aggregation at 20 degrees C were determined by circular dichroism, fluorescence, and alkaline- and SDS-polyacrylamide gel electrophoresis (PAGE). Both palmitate and SDS stabilized the native structure of beta-LG against heat-induced structural flexibility, subsequent unfolding, and denaturation. Retinol was less effective, probably because of its lower affinity for the calyx-binding site, and ANS did not stabilize beta-LG, suggesting that ANS did not bind strongly in the calyx. It was also noted that holding a beta-LG solution with added SDS or ANS promoted the formation of a hydrophobically associated non-native dimer.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Temperatura Alta , Lactoglobulinas/química , Palmitatos/metabolismo , Dodecilsulfato de Sódio/metabolismo , Vitamina A/metabolismo , Fenômenos Químicos , Físico-Química , Dimerização , Eletroforese em Gel de Poliacrilamida , Lactoglobulinas/metabolismo , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...