Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 100(6): 1163-1175, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436858

RESUMO

During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next-generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome-wide by 143 single-nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single-CO event was detected within the inversion, consistent with a post-meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.


Assuntos
Arabidopsis/genética , Inversão Cromossômica , Cromossomos de Plantas/genética , Troca Genética , Heterozigoto , Recombinação Genética , Mapeamento Cromossômico , Genes de Plantas , Genoma de Planta , Meiose/genética , Pólen , Polimorfismo de Nucleotídeo Único
2.
BMC Genomics ; 14: 57, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356725

RESUMO

BACKGROUND: Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. RESULTS: Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. CONCLUSIONS: In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.


Assuntos
Genômica , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Epigênese Genética , Genoma de Planta/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Filogenia , Especificidade da Espécie , Transcriptoma
3.
BMC Evol Biol ; 11: 78, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21435253

RESUMO

BACKGROUND: Polyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2n). Parallel Spindle1 gene in Arabidopsis thaliana (AtPS1) was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2n pollen. Interestingly, AtPS1 encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay). In potato, 2n pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from AtPS1 as well as the availability of genome sequences makes it possible to isolate potato PSLike (PSL) and to highlight the evolution of PSL family in plants. RESULTS: Our work leading to the first characterization of PSLs in potato showed a greater PSL complexity in this species respect to Arabidopsis thaliana. Indeed, a genomic PSL locus and seven cDNAs affected by alternative splicing have been cloned. In addition, the occurrence of at least two other PSL loci in potato was suggested by the sequence comparison of alternatively spliced transcripts.Phylogenetic analysis on 20 Viridaeplantae showed the wide distribution of PSLs throughout the species and the occurrence of multiple copies only in potato and soybean.The analysis of PSLFHA and PSLPINc domains evidenced that, in terms of secondary structure, a major degree of variability occurred in PINc domain respect to FHA. In terms of specific active sites, both domains showed diversification among plant species that could be related to a functional diversification among PSL genes. In addition, some specific active sites were strongly conserved among plants as supported by sequence alignment and by evidence of negative selection evaluated as difference between non-synonymous and synonymous mutations. CONCLUSIONS: In this study, we highlight the existence of PSLs throughout Viridaeplantae, from mosses to higher plants. We provide evidence that PSLs occur mostly as singleton in the analyzed genomes except in soybean and potato both characterized by a recent whole genome duplication event. In potato, we suggest the candidate PSL gene having a role in 2n pollen that should be deeply investigated.We provide useful insight into evolutionary conservation of FHA and PINc domains throughout plant PSLs which suggest a fundamental role of these domains for PSL function.


Assuntos
Proteínas de Arabidopsis/genética , Evolução Molecular , Família Multigênica , Filogenia , Solanum tuberosum/genética , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , DNA de Plantas/genética , Dosagem de Genes , Genes de Plantas , Funções Verossimilhança , Dados de Sequência Molecular , Proteínas de Plantas/genética , Poliploidia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...