Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 24(43): 7883-7887, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36268790

RESUMO

Indoles are among the most important N-heterocycles in pharmaceuticals. Here, we present an alternative to the classic Fischer indole synthesis based on the radical coupling between aryl diazoniums and alkyl iodides. This iron-mediated strategy features a double role for the aryl diazoniums that sequentially activate the alkyl iodides through halogen-atom transfer and then serve as radical acceptors. The process operates under mild conditions and enables the preparation of densely functionalized indoles.


Assuntos
Iodetos , Sais , Halogênios , Catálise , Estrutura Molecular , Indóis
2.
Science ; 377(6612): 1323-1328, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36108027

RESUMO

The generation of carbon radicals by halogen-atom and group transfer reactions is generally achieved using tin and silicon reagents that maximize the interplay of enthalpic (thermodynamic) and polar (kinetic) effects. In this work, we demonstrate a distinct reactivity mode enabled by quantum mechanical tunneling that uses the cyclohexadiene derivative γ-terpinene as the abstractor under mild photochemical conditions. This protocol activates alkyl and aryl halides as well as several alcohol and thiol derivatives. Experimental and computational studies unveiled a noncanonical pathway whereby a cyclohexadienyl radical undergoes concerted aromatization and halogen-atom or group abstraction through the reactivity of an effective H atom. This activation mechanism is seemingly thermodynamically and kinetically unfavorable but is rendered feasible through quantum tunneling.

3.
Chem Rev ; 122(2): 2292-2352, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34882396

RESUMO

The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.


Assuntos
Carbono , Halogênios , Fotoquímica
4.
J Am Chem Soc ; 143(36): 14806-14813, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34468137

RESUMO

We report here a mechanistically distinct tactic to carry E2-type eliminations on alkyl halides. This strategy exploits the interplay of α-aminoalkyl radical-mediated halogen-atom transfer (XAT) with desaturative cobalt catalysis. The methodology is high-yielding, tolerates many functionalities, and was used to access industrially relevant materials. In contrast to thermal E2 eliminations where unsymmetrical substrates give regioisomeric mixtures, this approach enables, by fine-tuning of the electronic and steric properties of the cobalt catalyst, to obtain high olefin positional selectivity. This unprecedented mechanistic feature has allowed access to contra-thermodynamic olefins, elusive by E2 eliminations.

5.
Chem Sci ; 12(31): 10448-10454, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447537

RESUMO

Radical hydroxymethylation using formaldehyde as a C1 synthon is challenging due to the reversible and endothermic nature of the addition process. Here we report a strategy that couples alkyl iodide building blocks with formaldehyde through the use of photocatalysis and a phosphine additive. Halogen-atom transfer (XAT) from α-aminoalkyl radicals is leveraged to convert the iodide into the corresponding open-shell species, while its following addition to formaldehyde is rendered irreversible by trapping the transient O-radical with PPh3. This event delivers a phosphoranyl radical that re-generates the alkyl radical and provides the hydroxymethylated product.

6.
Nature ; 595(7869): 677-683, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015802

RESUMO

Boron functional groups are often introduced in place of aromatic carbon-hydrogen bonds to expedite small-molecule diversification through coupling of molecular fragments1-3. Current approaches based on transition-metal-catalysed activation of carbon-hydrogen bonds are effective for the borylation of many (hetero)aromatic derivatives4,5 but show narrow applicability to azines (nitrogen-containing aromatic heterocycles), which are key components of many pharmaceutical and agrochemical products6. Here we report an azine borylation strategy using stable and inexpensive amine-borane7 reagents. Photocatalysis converts these low-molecular-weight materials into highly reactive boryl radicals8 that undergo efficient addition to azine building blocks. This reactivity provides a mechanistically alternative tactic for sp2 carbon-boron bond assembly, where the elementary steps of transition-metal-mediated carbon-hydrogen bond activation and reductive elimination from azine-organometallic intermediates are replaced by a direct, Minisci9-style, radical addition. The strongly nucleophilic character of the amine-boryl radicals enables predictable and site-selective carbon-boron bond formation by targeting the azine's most activated position, including the challenging sites adjacent to the basic nitrogen atom. This approach enables access to aromatic sites that elude current strategies based on carbon-hydrogen bond activation, and has led to borylated materials that would otherwise be difficult to prepare. We have applied this process to the introduction of amine-borane functionalities to complex and industrially relevant products. The diversification of the borylated azine products by mainstream cross-coupling technologies establishes aromatic amino-boranes as a powerful class of building blocks for chemical synthesis.

7.
Science ; 367(6481): 1021-1026, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32108109

RESUMO

Organic halides are important building blocks in synthesis, but their use in (photo)redox chemistry is limited by their low reduction potentials. Halogen-atom transfer remains the most reliable approach to exploit these substrates in radical processes despite its requirement for hazardous reagents and initiators such as tributyltin hydride. In this study, we demonstrate that α-aminoalkyl radicals, easily accessible from simple amines, promote the homolytic activation of carbon-halogen bonds with a reactivity profile mirroring that of classical tin radicals. This strategy conveniently engages alkyl and aryl halides in a wide range of redox transformations to construct sp3-sp3, sp3-sp2, and sp2-sp2 carbon-carbon bonds under mild conditions with high chemoselectivity.

8.
Chem Sci ; 11(47): 12822-12828, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34094477

RESUMO

The generation of aryl radicals from the corresponding halides by redox chemistry is generally considered a difficult task due to their highly negative reduction potentials. Here we demonstrate that α-aminoalkyl radicals can be used as both initiators and chain-carriers for the radical coupling of aryl halides with pyrrole derivatives, a transformation often employed to evaluate new highly reducing photocatalysts. This mode of reactivity obviates for the use of strong reducing species and was also competent in the formation of sp2 C-P bonds. Mechanistic studies have delineated some of the key features operating that trigger aryl radical generation and also propagate the chain process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...